具有解析系数的线性微分方程解的双阶增长

H. Fettouch, S. Hamouda
{"title":"具有解析系数的线性微分方程解的双阶增长","authors":"H. Fettouch, S. Hamouda","doi":"10.20948/mathmontis-2022-54-4","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the [p,q]-order of growth of solutions to certain linear differential equations with entire coefficients and analytic coefficients in the unit disc by using the Nevanlinna theory of meromorphic functions. This work is an improvement and generalization of some previous results by the second author.","PeriodicalId":170315,"journal":{"name":"Mathematica Montisnigri","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Double order of growth of solutions to linear differential equations with analytic coefficients\",\"authors\":\"H. Fettouch, S. Hamouda\",\"doi\":\"10.20948/mathmontis-2022-54-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate the [p,q]-order of growth of solutions to certain linear differential equations with entire coefficients and analytic coefficients in the unit disc by using the Nevanlinna theory of meromorphic functions. This work is an improvement and generalization of some previous results by the second author.\",\"PeriodicalId\":170315,\"journal\":{\"name\":\"Mathematica Montisnigri\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematica Montisnigri\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20948/mathmontis-2022-54-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematica Montisnigri","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20948/mathmontis-2022-54-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文利用亚纯函数的Nevanlinna理论,研究了单位圆盘上一类具有全系数和解析系数的线性微分方程解的[p,q]阶生长。这项工作是对第二作者以前的一些结果的改进和推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Double order of growth of solutions to linear differential equations with analytic coefficients
In this paper, we investigate the [p,q]-order of growth of solutions to certain linear differential equations with entire coefficients and analytic coefficients in the unit disc by using the Nevanlinna theory of meromorphic functions. This work is an improvement and generalization of some previous results by the second author.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信