{"title":"多特征融合方法在纹理图像分割中的应用","authors":"Hui Du, Zhihe Wang, Dan Wang, Xiaoli Wang","doi":"10.1109/CIS2018.2018.00037","DOIUrl":null,"url":null,"abstract":"Texture patterns are complex and varied, and their applications are diverse. In many cases, the effect of image segmentation by a single texture feature extraction method is not ideal. In response to this problem, this paper proposes a multi-feature fusion method to process the texture feature extraction. The proposed method combines the gray level co-occurrence matrix (GLCM), Gabor wavelet transform and local binary pattern (LBP). It has the advantages of the above three texture feature extraction methods. Then, we use the algorithm K-means to implement the image segmentation by clustering the extracted texture features. As a result, the proposed algorithm can precisely realize the clustering for texture image segmentation. The experimental results show that the proposed algorithm is more efficient than the single texture feature extraction methods.","PeriodicalId":185099,"journal":{"name":"2018 14th International Conference on Computational Intelligence and Security (CIS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Multi-Feature Fusion Method Applied in Texture Image Segmentation\",\"authors\":\"Hui Du, Zhihe Wang, Dan Wang, Xiaoli Wang\",\"doi\":\"10.1109/CIS2018.2018.00037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Texture patterns are complex and varied, and their applications are diverse. In many cases, the effect of image segmentation by a single texture feature extraction method is not ideal. In response to this problem, this paper proposes a multi-feature fusion method to process the texture feature extraction. The proposed method combines the gray level co-occurrence matrix (GLCM), Gabor wavelet transform and local binary pattern (LBP). It has the advantages of the above three texture feature extraction methods. Then, we use the algorithm K-means to implement the image segmentation by clustering the extracted texture features. As a result, the proposed algorithm can precisely realize the clustering for texture image segmentation. The experimental results show that the proposed algorithm is more efficient than the single texture feature extraction methods.\",\"PeriodicalId\":185099,\"journal\":{\"name\":\"2018 14th International Conference on Computational Intelligence and Security (CIS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 14th International Conference on Computational Intelligence and Security (CIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIS2018.2018.00037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 14th International Conference on Computational Intelligence and Security (CIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS2018.2018.00037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-Feature Fusion Method Applied in Texture Image Segmentation
Texture patterns are complex and varied, and their applications are diverse. In many cases, the effect of image segmentation by a single texture feature extraction method is not ideal. In response to this problem, this paper proposes a multi-feature fusion method to process the texture feature extraction. The proposed method combines the gray level co-occurrence matrix (GLCM), Gabor wavelet transform and local binary pattern (LBP). It has the advantages of the above three texture feature extraction methods. Then, we use the algorithm K-means to implement the image segmentation by clustering the extracted texture features. As a result, the proposed algorithm can precisely realize the clustering for texture image segmentation. The experimental results show that the proposed algorithm is more efficient than the single texture feature extraction methods.