利用Koopman理论发现大规模电网模型的低秩表示

Asif Hamid, Danish Rafiq, S. A. Nahvi, Mohammad Abid Bazaz
{"title":"利用Koopman理论发现大规模电网模型的低秩表示","authors":"Asif Hamid, Danish Rafiq, S. A. Nahvi, Mohammad Abid Bazaz","doi":"10.1109/TEECCON54414.2022.9854835","DOIUrl":null,"url":null,"abstract":"The description of coherent features in modern power grids is fundamental in understanding the underlying transient phenomena. While the system dynamics is large-scale and governed by strong nonlinear behavior, an efficient sparse representation can be formulated in a suitable coordinate system. One such representation is given by the Dynamic Mode Decomposition (DMD). In this contribution, we use DMD to obtain low-dimensional reconstructions of power system models from data obtained via a direct numerical simulation or a physical experiment. Notably, we show that DMD can describe the underlying oscillatory swing dynamics captured in data or project the large-scale solution manifold on a system having fewer degrees of freedom.","PeriodicalId":251455,"journal":{"name":"2022 Trends in Electrical, Electronics, Computer Engineering Conference (TEECCON)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovering low-rank representations of large-scale power-grid models using Koopman theory\",\"authors\":\"Asif Hamid, Danish Rafiq, S. A. Nahvi, Mohammad Abid Bazaz\",\"doi\":\"10.1109/TEECCON54414.2022.9854835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The description of coherent features in modern power grids is fundamental in understanding the underlying transient phenomena. While the system dynamics is large-scale and governed by strong nonlinear behavior, an efficient sparse representation can be formulated in a suitable coordinate system. One such representation is given by the Dynamic Mode Decomposition (DMD). In this contribution, we use DMD to obtain low-dimensional reconstructions of power system models from data obtained via a direct numerical simulation or a physical experiment. Notably, we show that DMD can describe the underlying oscillatory swing dynamics captured in data or project the large-scale solution manifold on a system having fewer degrees of freedom.\",\"PeriodicalId\":251455,\"journal\":{\"name\":\"2022 Trends in Electrical, Electronics, Computer Engineering Conference (TEECCON)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Trends in Electrical, Electronics, Computer Engineering Conference (TEECCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TEECCON54414.2022.9854835\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Trends in Electrical, Electronics, Computer Engineering Conference (TEECCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TEECCON54414.2022.9854835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

现代电网中相干特性的描述是理解潜在暂态现象的基础。当系统动力学是大规模且受强非线性行为控制时,可以在合适的坐标系中形成有效的稀疏表示。动态模态分解(DMD)给出了这样一种表示。在这个贡献中,我们使用DMD从通过直接数值模拟或物理实验获得的数据中获得电力系统模型的低维重建。值得注意的是,我们表明DMD可以描述数据中捕获的潜在振荡摆动动力学,或者在具有较少自由度的系统上投影大规模解流形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discovering low-rank representations of large-scale power-grid models using Koopman theory
The description of coherent features in modern power grids is fundamental in understanding the underlying transient phenomena. While the system dynamics is large-scale and governed by strong nonlinear behavior, an efficient sparse representation can be formulated in a suitable coordinate system. One such representation is given by the Dynamic Mode Decomposition (DMD). In this contribution, we use DMD to obtain low-dimensional reconstructions of power system models from data obtained via a direct numerical simulation or a physical experiment. Notably, we show that DMD can describe the underlying oscillatory swing dynamics captured in data or project the large-scale solution manifold on a system having fewer degrees of freedom.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信