处理器时间最优收缩阵列

P. Cappello, Ö. Eğecioğlu, C. Scheiman
{"title":"处理器时间最优收缩阵列","authors":"P. Cappello, Ö. Eğecioğlu, C. Scheiman","doi":"10.1080/01495730008947355","DOIUrl":null,"url":null,"abstract":"Abstract Minimizing the amount of time and number of processors needed to perform an application reduces the application's fabrication cost and operation costs. A directed acyclic graph (dag) model of algorithms is used to define a time-minimal schedule and a processor-time-minimal schedule, We present a technique for finding a lower bound on the number of processors needed to achieve a given schedule of an algorithm. The application of this technique is illustrated with a tensor product computation. We then apply the technique to the free schedule of algorithms for matrix product, Gaussian elimination, and transitive closure. For each, we provide a time-minimal processor schedule that meets these processor lower bounds, including the one for tensor product.","PeriodicalId":406098,"journal":{"name":"Parallel Algorithms and Applications","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"PROCESSOR-TIME-OPTIMAL SYSTOLIC ARRAYS\",\"authors\":\"P. Cappello, Ö. Eğecioğlu, C. Scheiman\",\"doi\":\"10.1080/01495730008947355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Minimizing the amount of time and number of processors needed to perform an application reduces the application's fabrication cost and operation costs. A directed acyclic graph (dag) model of algorithms is used to define a time-minimal schedule and a processor-time-minimal schedule, We present a technique for finding a lower bound on the number of processors needed to achieve a given schedule of an algorithm. The application of this technique is illustrated with a tensor product computation. We then apply the technique to the free schedule of algorithms for matrix product, Gaussian elimination, and transitive closure. For each, we provide a time-minimal processor schedule that meets these processor lower bounds, including the one for tensor product.\",\"PeriodicalId\":406098,\"journal\":{\"name\":\"Parallel Algorithms and Applications\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Parallel Algorithms and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/01495730008947355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Algorithms and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/01495730008947355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

最小化执行应用程序所需的时间和处理器数量可以降低应用程序的制造成本和运行成本。算法的有向无环图(dag)模型用于定义时间最小调度和处理器时间最小调度,我们提出了一种寻找实现给定调度所需处理器数量下界的技术。用张量积计算说明了这种方法的应用。然后,我们将该技术应用于矩阵乘积、高斯消去和传递闭包的自由调度算法。对于每一个,我们提供了一个时间最小的处理器调度,满足这些处理器下界,包括张量积的下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PROCESSOR-TIME-OPTIMAL SYSTOLIC ARRAYS
Abstract Minimizing the amount of time and number of processors needed to perform an application reduces the application's fabrication cost and operation costs. A directed acyclic graph (dag) model of algorithms is used to define a time-minimal schedule and a processor-time-minimal schedule, We present a technique for finding a lower bound on the number of processors needed to achieve a given schedule of an algorithm. The application of this technique is illustrated with a tensor product computation. We then apply the technique to the free schedule of algorithms for matrix product, Gaussian elimination, and transitive closure. For each, we provide a time-minimal processor schedule that meets these processor lower bounds, including the one for tensor product.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信