{"title":"处理器时间最优收缩阵列","authors":"P. Cappello, Ö. Eğecioğlu, C. Scheiman","doi":"10.1080/01495730008947355","DOIUrl":null,"url":null,"abstract":"Abstract Minimizing the amount of time and number of processors needed to perform an application reduces the application's fabrication cost and operation costs. A directed acyclic graph (dag) model of algorithms is used to define a time-minimal schedule and a processor-time-minimal schedule, We present a technique for finding a lower bound on the number of processors needed to achieve a given schedule of an algorithm. The application of this technique is illustrated with a tensor product computation. We then apply the technique to the free schedule of algorithms for matrix product, Gaussian elimination, and transitive closure. For each, we provide a time-minimal processor schedule that meets these processor lower bounds, including the one for tensor product.","PeriodicalId":406098,"journal":{"name":"Parallel Algorithms and Applications","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"PROCESSOR-TIME-OPTIMAL SYSTOLIC ARRAYS\",\"authors\":\"P. Cappello, Ö. Eğecioğlu, C. Scheiman\",\"doi\":\"10.1080/01495730008947355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Minimizing the amount of time and number of processors needed to perform an application reduces the application's fabrication cost and operation costs. A directed acyclic graph (dag) model of algorithms is used to define a time-minimal schedule and a processor-time-minimal schedule, We present a technique for finding a lower bound on the number of processors needed to achieve a given schedule of an algorithm. The application of this technique is illustrated with a tensor product computation. We then apply the technique to the free schedule of algorithms for matrix product, Gaussian elimination, and transitive closure. For each, we provide a time-minimal processor schedule that meets these processor lower bounds, including the one for tensor product.\",\"PeriodicalId\":406098,\"journal\":{\"name\":\"Parallel Algorithms and Applications\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Parallel Algorithms and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/01495730008947355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Algorithms and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/01495730008947355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Abstract Minimizing the amount of time and number of processors needed to perform an application reduces the application's fabrication cost and operation costs. A directed acyclic graph (dag) model of algorithms is used to define a time-minimal schedule and a processor-time-minimal schedule, We present a technique for finding a lower bound on the number of processors needed to achieve a given schedule of an algorithm. The application of this technique is illustrated with a tensor product computation. We then apply the technique to the free schedule of algorithms for matrix product, Gaussian elimination, and transitive closure. For each, we provide a time-minimal processor schedule that meets these processor lower bounds, including the one for tensor product.