{"title":"空冷钛反应器壁传热系数的数值研究","authors":"T. O. Karasev, A. Teimurazov, A. Perminov","doi":"10.7242/1999-6691/2020.13.4.33","DOIUrl":null,"url":null,"abstract":"Работа посвящена численному изучению теплового режима поверхности реторты в аппарате для производства титана. Рассматривается задача сопряженного теплообмена между стенкой цилиндрической реторты и стенкой печи с нагревателями. Между стенками находится зазор, через который прокачивается воздух. Целью работы является получение оценок для температурного режима стенки реторты и коэффициента теплоотдачи с ее поверхности при различных режимах нагрева и охлаждения аппарата. Данные о распределении тепловых потоков на стенках реторты необходимы для расчета турбулентных конвективных течений жидкого магния внутри реторты, поскольку неоднородность температуры может оказывать существенное влияние на процессы, происходящие у нее внутри. Расчетная область состоит из твердых стенок, между которыми движется воздух. Математическая модель основывается на системе нестационарных уравнений Навье–Стокса в осесимметричной постановке с применением RANS (Reynolds-averaged Navier–Stokes equations) подхода к описанию турбулентных полей. Модель позволяет наряду с механизмами вынужденной конвекции и теплопроводности учитывать также и радиационный теплообмен между двумя противоположными стенками. Изучаются четыре варианта нагрева, возможные при работе реактора. Получены оценки для необходимой скорости обдува, при которой удается сохранять нагрев стенки реторты в рабочем диапазоне от 750 до 950oС во всех режимах. Показано, что температура вдоль исследуемого участка стенки реторты неоднородна. Для коэффициента теплоотдачи с боковой поверхности реторты построены зависимости от вертикальной координаты и проведено их сопоставление с известной формулой расчета коэффициента теплоотдачи от плоской бесконечной поверхности с постоянным тепловым потоком через нее. Установлено, что в обсуждаемом случае, который является более сложным, рассчитанные значения коэффициентов оказались близки к предсказываемым известными инженерными формулами значениям только в части исследованных режимов. Обнаружено, что в значительном диапазоне рассматриваемых параметров наблюдаются заметные отличия полученных зависимостей от упрощенных оценок. Наибольшая разница имеет место вблизи входа в канал, где градиенты температуры максимальны.","PeriodicalId":273064,"journal":{"name":"Computational Continuum Mechanics","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Numerical study of heat transfer coefficient of titanium reactor wall at air cooling\",\"authors\":\"T. O. Karasev, A. Teimurazov, A. Perminov\",\"doi\":\"10.7242/1999-6691/2020.13.4.33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Работа посвящена численному изучению теплового режима поверхности реторты в аппарате для производства титана. Рассматривается задача сопряженного теплообмена между стенкой цилиндрической реторты и стенкой печи с нагревателями. Между стенками находится зазор, через который прокачивается воздух. Целью работы является получение оценок для температурного режима стенки реторты и коэффициента теплоотдачи с ее поверхности при различных режимах нагрева и охлаждения аппарата. Данные о распределении тепловых потоков на стенках реторты необходимы для расчета турбулентных конвективных течений жидкого магния внутри реторты, поскольку неоднородность температуры может оказывать существенное влияние на процессы, происходящие у нее внутри. Расчетная область состоит из твердых стенок, между которыми движется воздух. Математическая модель основывается на системе нестационарных уравнений Навье–Стокса в осесимметричной постановке с применением RANS (Reynolds-averaged Navier–Stokes equations) подхода к описанию турбулентных полей. Модель позволяет наряду с механизмами вынужденной конвекции и теплопроводности учитывать также и радиационный теплообмен между двумя противоположными стенками. Изучаются четыре варианта нагрева, возможные при работе реактора. Получены оценки для необходимой скорости обдува, при которой удается сохранять нагрев стенки реторты в рабочем диапазоне от 750 до 950oС во всех режимах. Показано, что температура вдоль исследуемого участка стенки реторты неоднородна. Для коэффициента теплоотдачи с боковой поверхности реторты построены зависимости от вертикальной координаты и проведено их сопоставление с известной формулой расчета коэффициента теплоотдачи от плоской бесконечной поверхности с постоянным тепловым потоком через нее. Установлено, что в обсуждаемом случае, который является более сложным, рассчитанные значения коэффициентов оказались близки к предсказываемым известными инженерными формулами значениям только в части исследованных режимов. Обнаружено, что в значительном диапазоне рассматриваемых параметров наблюдаются заметные отличия полученных зависимостей от упрощенных оценок. Наибольшая разница имеет место вблизи входа в канал, где градиенты температуры максимальны.\",\"PeriodicalId\":273064,\"journal\":{\"name\":\"Computational Continuum Mechanics\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Continuum Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7242/1999-6691/2020.13.4.33\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Continuum Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7242/1999-6691/2020.13.4.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Numerical study of heat transfer coefficient of titanium reactor wall at air cooling
Работа посвящена численному изучению теплового режима поверхности реторты в аппарате для производства титана. Рассматривается задача сопряженного теплообмена между стенкой цилиндрической реторты и стенкой печи с нагревателями. Между стенками находится зазор, через который прокачивается воздух. Целью работы является получение оценок для температурного режима стенки реторты и коэффициента теплоотдачи с ее поверхности при различных режимах нагрева и охлаждения аппарата. Данные о распределении тепловых потоков на стенках реторты необходимы для расчета турбулентных конвективных течений жидкого магния внутри реторты, поскольку неоднородность температуры может оказывать существенное влияние на процессы, происходящие у нее внутри. Расчетная область состоит из твердых стенок, между которыми движется воздух. Математическая модель основывается на системе нестационарных уравнений Навье–Стокса в осесимметричной постановке с применением RANS (Reynolds-averaged Navier–Stokes equations) подхода к описанию турбулентных полей. Модель позволяет наряду с механизмами вынужденной конвекции и теплопроводности учитывать также и радиационный теплообмен между двумя противоположными стенками. Изучаются четыре варианта нагрева, возможные при работе реактора. Получены оценки для необходимой скорости обдува, при которой удается сохранять нагрев стенки реторты в рабочем диапазоне от 750 до 950oС во всех режимах. Показано, что температура вдоль исследуемого участка стенки реторты неоднородна. Для коэффициента теплоотдачи с боковой поверхности реторты построены зависимости от вертикальной координаты и проведено их сопоставление с известной формулой расчета коэффициента теплоотдачи от плоской бесконечной поверхности с постоянным тепловым потоком через нее. Установлено, что в обсуждаемом случае, который является более сложным, рассчитанные значения коэффициентов оказались близки к предсказываемым известными инженерными формулами значениям только в части исследованных режимов. Обнаружено, что в значительном диапазоне рассматриваемых параметров наблюдаются заметные отличия полученных зависимостей от упрощенных оценок. Наибольшая разница имеет место вблизи входа в канал, где градиенты температуры максимальны.