{"title":"基于生成对抗网络的单目摄像机实时密集映射","authors":"Xin Yang, Jinyu Chen, Zhiwei Wang, Qiaozhe Zhang, Wenyu Liu, Chunyuan Liao, K. Cheng","doi":"10.1145/3240508.3240564","DOIUrl":null,"url":null,"abstract":"Monocular simultaneous localization and mapping (SLAM) is a key enabling technique for many computer vision and robotics applications. However, existing methods either can obtain only sparse or semi-dense maps in highly-textured image areas or fail to achieve a satisfactory reconstruction accuracy. In this paper, we present a new method based on a generative adversarial network,named DM-GAN, for real-time dense mapping based on a monocular camera. Specifcally, our depth generator network takes a semidense map obtained from motion stereo matching as a guidance to supervise dense depth prediction of a single RGB image. The depth generator is trained based on a combination of two loss functions, i.e. an adversarial loss for enforcing the generated depth maps to reside on the manifold of the true depth maps and a pixel-wise mean square error (MSE) for ensuring the correct absolute depth values. Extensive experiments on three public datasets demonstrate that our DM-GAN signifcantly outperforms the state-of-the-art methods in terms of greater reconstruction accuracy and higher depth completeness.","PeriodicalId":339857,"journal":{"name":"Proceedings of the 26th ACM international conference on Multimedia","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Monocular Camera Based Real-Time Dense Mapping Using Generative Adversarial Network\",\"authors\":\"Xin Yang, Jinyu Chen, Zhiwei Wang, Qiaozhe Zhang, Wenyu Liu, Chunyuan Liao, K. Cheng\",\"doi\":\"10.1145/3240508.3240564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Monocular simultaneous localization and mapping (SLAM) is a key enabling technique for many computer vision and robotics applications. However, existing methods either can obtain only sparse or semi-dense maps in highly-textured image areas or fail to achieve a satisfactory reconstruction accuracy. In this paper, we present a new method based on a generative adversarial network,named DM-GAN, for real-time dense mapping based on a monocular camera. Specifcally, our depth generator network takes a semidense map obtained from motion stereo matching as a guidance to supervise dense depth prediction of a single RGB image. The depth generator is trained based on a combination of two loss functions, i.e. an adversarial loss for enforcing the generated depth maps to reside on the manifold of the true depth maps and a pixel-wise mean square error (MSE) for ensuring the correct absolute depth values. Extensive experiments on three public datasets demonstrate that our DM-GAN signifcantly outperforms the state-of-the-art methods in terms of greater reconstruction accuracy and higher depth completeness.\",\"PeriodicalId\":339857,\"journal\":{\"name\":\"Proceedings of the 26th ACM international conference on Multimedia\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 26th ACM international conference on Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3240508.3240564\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th ACM international conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3240508.3240564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Monocular Camera Based Real-Time Dense Mapping Using Generative Adversarial Network
Monocular simultaneous localization and mapping (SLAM) is a key enabling technique for many computer vision and robotics applications. However, existing methods either can obtain only sparse or semi-dense maps in highly-textured image areas or fail to achieve a satisfactory reconstruction accuracy. In this paper, we present a new method based on a generative adversarial network,named DM-GAN, for real-time dense mapping based on a monocular camera. Specifcally, our depth generator network takes a semidense map obtained from motion stereo matching as a guidance to supervise dense depth prediction of a single RGB image. The depth generator is trained based on a combination of two loss functions, i.e. an adversarial loss for enforcing the generated depth maps to reside on the manifold of the true depth maps and a pixel-wise mean square error (MSE) for ensuring the correct absolute depth values. Extensive experiments on three public datasets demonstrate that our DM-GAN signifcantly outperforms the state-of-the-art methods in terms of greater reconstruction accuracy and higher depth completeness.