用神经网络模拟股票收益

A. Refenes, A. Zapranis, Y. Bentz
{"title":"用神经网络模拟股票收益","authors":"A. Refenes, A. Zapranis, Y. Bentz","doi":"10.1109/NNAT.1993.586052","DOIUrl":null,"url":null,"abstract":"Neural networks have attracted much interest in financial engineering but many multivariate data series remain diflcult to model. In this paper we use a non trivial problem in expsure analysis of share prices to multiple factors to explore the interrelationships among the numerous network and data engineering parameters and we highlight the importance of a careful choice of the indicators used as network inputs. We show how data pre-processing can improve generalisation performance by up to 30.5% and present a \"time-sensitive\" cost function, designed to take into account gradually changing input-output relationships. We give empirical evidence that when it is combined with the right leaMags in the indicators generalisation can be further improved by up to IO. 1 %.","PeriodicalId":164805,"journal":{"name":"Workshop on Neural Network Applications and Tools","volume":"89 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Modelling Stock Returns With Neural Networks\",\"authors\":\"A. Refenes, A. Zapranis, Y. Bentz\",\"doi\":\"10.1109/NNAT.1993.586052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neural networks have attracted much interest in financial engineering but many multivariate data series remain diflcult to model. In this paper we use a non trivial problem in expsure analysis of share prices to multiple factors to explore the interrelationships among the numerous network and data engineering parameters and we highlight the importance of a careful choice of the indicators used as network inputs. We show how data pre-processing can improve generalisation performance by up to 30.5% and present a \\\"time-sensitive\\\" cost function, designed to take into account gradually changing input-output relationships. We give empirical evidence that when it is combined with the right leaMags in the indicators generalisation can be further improved by up to IO. 1 %.\",\"PeriodicalId\":164805,\"journal\":{\"name\":\"Workshop on Neural Network Applications and Tools\",\"volume\":\"89 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Neural Network Applications and Tools\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NNAT.1993.586052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Neural Network Applications and Tools","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNAT.1993.586052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

神经网络在金融工程中引起了很大的兴趣,但许多多变量数据序列仍然难以建模。在本文中,我们在股票价格暴露分析中使用了一个非平凡问题,以探索众多网络和数据工程参数之间的相互关系,并强调了谨慎选择用作网络输入的指标的重要性。我们展示了数据预处理如何提高高达30.5%的泛化性能,并提出了一个“时间敏感”的成本函数,旨在考虑逐渐变化的输入输出关系。我们提供的经验证据表明,当它与指标中的正确标签相结合时,概括性可以进一步提高高达IO。1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modelling Stock Returns With Neural Networks
Neural networks have attracted much interest in financial engineering but many multivariate data series remain diflcult to model. In this paper we use a non trivial problem in expsure analysis of share prices to multiple factors to explore the interrelationships among the numerous network and data engineering parameters and we highlight the importance of a careful choice of the indicators used as network inputs. We show how data pre-processing can improve generalisation performance by up to 30.5% and present a "time-sensitive" cost function, designed to take into account gradually changing input-output relationships. We give empirical evidence that when it is combined with the right leaMags in the indicators generalisation can be further improved by up to IO. 1 %.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信