基于深度强化学习的无人机路径规划方法

Yibing Li, Sitong Zhang, Fang Ye, T. Jiang, Yingsong Li
{"title":"基于深度强化学习的无人机路径规划方法","authors":"Yibing Li, Sitong Zhang, Fang Ye, T. Jiang, Yingsong Li","doi":"10.23919/USNC/URSI49741.2020.9321625","DOIUrl":null,"url":null,"abstract":"The path planning of Unmanned Aerial Vehicle (UAV) is a critical component of rescue operation. As impacted by the continuity of the task space and the high dynamics of the aircraft, conventional approaches cannot find the optimal control strategy. Accordingly, in this study, a deep reinforcement learning (DRL)-based UAV path planning method is proposed, enabling the UAV to complete the path planning in a 3D continuous environment. The deep deterministic policy gradient (DDPG) algorithm is employed to enable UAV to autonomously make decisions. Besides, to avoid obstacles, the concepts of connected area and threat function are proposed and adopted in the reward shaping. Lastly, an environment with static obstacles is built, and the agent is trained using the proposed method. As has been proved by the experiments, the proposed algorithm can fit a range of scenarios.","PeriodicalId":443426,"journal":{"name":"2020 IEEE USNC-CNC-URSI North American Radio Science Meeting (Joint with AP-S Symposium)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"A UAV Path Planning Method Based on Deep Reinforcement Learning\",\"authors\":\"Yibing Li, Sitong Zhang, Fang Ye, T. Jiang, Yingsong Li\",\"doi\":\"10.23919/USNC/URSI49741.2020.9321625\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The path planning of Unmanned Aerial Vehicle (UAV) is a critical component of rescue operation. As impacted by the continuity of the task space and the high dynamics of the aircraft, conventional approaches cannot find the optimal control strategy. Accordingly, in this study, a deep reinforcement learning (DRL)-based UAV path planning method is proposed, enabling the UAV to complete the path planning in a 3D continuous environment. The deep deterministic policy gradient (DDPG) algorithm is employed to enable UAV to autonomously make decisions. Besides, to avoid obstacles, the concepts of connected area and threat function are proposed and adopted in the reward shaping. Lastly, an environment with static obstacles is built, and the agent is trained using the proposed method. As has been proved by the experiments, the proposed algorithm can fit a range of scenarios.\",\"PeriodicalId\":443426,\"journal\":{\"name\":\"2020 IEEE USNC-CNC-URSI North American Radio Science Meeting (Joint with AP-S Symposium)\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE USNC-CNC-URSI North American Radio Science Meeting (Joint with AP-S Symposium)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/USNC/URSI49741.2020.9321625\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE USNC-CNC-URSI North American Radio Science Meeting (Joint with AP-S Symposium)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/USNC/URSI49741.2020.9321625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

无人机的路径规划是救援行动的关键组成部分。由于任务空间的连续性和飞机的高动力学特性,传统方法无法找到最优控制策略。因此,本研究提出了一种基于深度强化学习(DRL)的无人机路径规划方法,使无人机能够在三维连续环境中完成路径规划。采用深度确定性策略梯度(deep deterministic policy gradient, DDPG)算法实现无人机自主决策。此外,为了避免障碍,提出了连通区域和威胁函数的概念,并将其应用于奖励形成中。最后,构建具有静态障碍物的环境,并使用该方法对智能体进行训练。实验证明,该算法可以适应多种场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A UAV Path Planning Method Based on Deep Reinforcement Learning
The path planning of Unmanned Aerial Vehicle (UAV) is a critical component of rescue operation. As impacted by the continuity of the task space and the high dynamics of the aircraft, conventional approaches cannot find the optimal control strategy. Accordingly, in this study, a deep reinforcement learning (DRL)-based UAV path planning method is proposed, enabling the UAV to complete the path planning in a 3D continuous environment. The deep deterministic policy gradient (DDPG) algorithm is employed to enable UAV to autonomously make decisions. Besides, to avoid obstacles, the concepts of connected area and threat function are proposed and adopted in the reward shaping. Lastly, an environment with static obstacles is built, and the agent is trained using the proposed method. As has been proved by the experiments, the proposed algorithm can fit a range of scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信