个性化混合图书推荐

Hossein Arabi, Vimala Balakrishnan
{"title":"个性化混合图书推荐","authors":"Hossein Arabi, Vimala Balakrishnan","doi":"10.4018/IJISSS.2019070105","DOIUrl":null,"url":null,"abstract":"Personalized Recommendation Systems (RS) provide end users with suggestions about items that are likely to be of their interest based on users' details such as demographics, location, time, and emotion. In this article, a Personalized Hybrid Book Recommender (PHyBR) is presented, which integrates personality traits with users' demographic data and geographical location to improve the quality of recommendations. The Ten Item Personality Inventory (TIPI) was used to determine users' personality traits. PHyBR was evaluated using two metrics, that are, Standardized Root Mean Square Residual (SRMR) and Root Mean Square Error of Approximation (RMSEA). Both metrics revealed PHyBR outperforms the baseline models (without considering personality traits and geographical location factor) in terms of the recommendation accuracies. This study shows that users who are in the same geographical contexts intend to have similar preferences. Therefore, users' personality details along with their geographical locations can be used to provide improved personalized recommendations.","PeriodicalId":151306,"journal":{"name":"Int. J. Inf. Syst. Serv. Sect.","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Personalized Hybrid Book Recommender\",\"authors\":\"Hossein Arabi, Vimala Balakrishnan\",\"doi\":\"10.4018/IJISSS.2019070105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Personalized Recommendation Systems (RS) provide end users with suggestions about items that are likely to be of their interest based on users' details such as demographics, location, time, and emotion. In this article, a Personalized Hybrid Book Recommender (PHyBR) is presented, which integrates personality traits with users' demographic data and geographical location to improve the quality of recommendations. The Ten Item Personality Inventory (TIPI) was used to determine users' personality traits. PHyBR was evaluated using two metrics, that are, Standardized Root Mean Square Residual (SRMR) and Root Mean Square Error of Approximation (RMSEA). Both metrics revealed PHyBR outperforms the baseline models (without considering personality traits and geographical location factor) in terms of the recommendation accuracies. This study shows that users who are in the same geographical contexts intend to have similar preferences. Therefore, users' personality details along with their geographical locations can be used to provide improved personalized recommendations.\",\"PeriodicalId\":151306,\"journal\":{\"name\":\"Int. J. Inf. Syst. Serv. Sect.\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Inf. Syst. Serv. Sect.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJISSS.2019070105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Inf. Syst. Serv. Sect.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJISSS.2019070105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

个性化推荐系统(RS)根据用户的详细信息,如人口统计、地点、时间和情感,为最终用户提供他们可能感兴趣的项目建议。本文提出了一种个性化混合图书推荐系统(PHyBR),该系统将用户的个性特征与用户的人口统计数据和地理位置相结合,以提高推荐的质量。使用十项人格量表(TIPI)来确定用户的人格特征。PHyBR采用标准化均方根残差(SRMR)和均方根近似误差(RMSEA)两个指标进行评估。两个指标都表明,在推荐准确性方面,PHyBR优于基线模型(不考虑人格特征和地理位置因素)。这项研究表明,处于相同地理环境的用户倾向于有相似的偏好。因此,用户的个性细节以及他们的地理位置可以用来提供改进的个性化推荐。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Personalized Hybrid Book Recommender
Personalized Recommendation Systems (RS) provide end users with suggestions about items that are likely to be of their interest based on users' details such as demographics, location, time, and emotion. In this article, a Personalized Hybrid Book Recommender (PHyBR) is presented, which integrates personality traits with users' demographic data and geographical location to improve the quality of recommendations. The Ten Item Personality Inventory (TIPI) was used to determine users' personality traits. PHyBR was evaluated using two metrics, that are, Standardized Root Mean Square Residual (SRMR) and Root Mean Square Error of Approximation (RMSEA). Both metrics revealed PHyBR outperforms the baseline models (without considering personality traits and geographical location factor) in terms of the recommendation accuracies. This study shows that users who are in the same geographical contexts intend to have similar preferences. Therefore, users' personality details along with their geographical locations can be used to provide improved personalized recommendations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信