Mo Xu, Xiaorui Zhang, Yu Wang, Ling Ren, Ziyu Wen, Yi Xu, G. Gong, Ningyi Xu, Huazhong Yang
{"title":"基于gpu的概率脑纤维束图","authors":"Mo Xu, Xiaorui Zhang, Yu Wang, Ling Ren, Ziyu Wen, Yi Xu, G. Gong, Ningyi Xu, Huazhong Yang","doi":"10.1109/IPDPSW.2012.92","DOIUrl":null,"url":null,"abstract":"Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) is an emerging technique that explores the structural connectivity of the human brain. The probabilistic fiber tractography based on DT-MRI data behaves more robustly than deterministic approaches in the presence of fiber crossings, but requires more prohibitive computational time. In this work we present a GPU-based probabilistic framework for brain fiber tractography. The framework includes two main steps: 1) Markov-Chain Monte-Carlo (MCMC) sampling, and 2) probabilistic streamlining fiber tracking. We implement the Metropolis-Hastings sampling for local parameter estimation on GPU. In the probabilistic streamlining fiber tracking, we find that fiber lengths are exponentially distributed, and propose a novel segmenting strategy to improve the load balance. On mid-range GPUs, we achieve performance gains up to 34x and 50x over CPUs for the two steps respectively.","PeriodicalId":378335,"journal":{"name":"2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Probabilistic Brain Fiber Tractography on GPUs\",\"authors\":\"Mo Xu, Xiaorui Zhang, Yu Wang, Ling Ren, Ziyu Wen, Yi Xu, G. Gong, Ningyi Xu, Huazhong Yang\",\"doi\":\"10.1109/IPDPSW.2012.92\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) is an emerging technique that explores the structural connectivity of the human brain. The probabilistic fiber tractography based on DT-MRI data behaves more robustly than deterministic approaches in the presence of fiber crossings, but requires more prohibitive computational time. In this work we present a GPU-based probabilistic framework for brain fiber tractography. The framework includes two main steps: 1) Markov-Chain Monte-Carlo (MCMC) sampling, and 2) probabilistic streamlining fiber tracking. We implement the Metropolis-Hastings sampling for local parameter estimation on GPU. In the probabilistic streamlining fiber tracking, we find that fiber lengths are exponentially distributed, and propose a novel segmenting strategy to improve the load balance. On mid-range GPUs, we achieve performance gains up to 34x and 50x over CPUs for the two steps respectively.\",\"PeriodicalId\":378335,\"journal\":{\"name\":\"2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPSW.2012.92\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW.2012.92","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) is an emerging technique that explores the structural connectivity of the human brain. The probabilistic fiber tractography based on DT-MRI data behaves more robustly than deterministic approaches in the presence of fiber crossings, but requires more prohibitive computational time. In this work we present a GPU-based probabilistic framework for brain fiber tractography. The framework includes two main steps: 1) Markov-Chain Monte-Carlo (MCMC) sampling, and 2) probabilistic streamlining fiber tracking. We implement the Metropolis-Hastings sampling for local parameter estimation on GPU. In the probabilistic streamlining fiber tracking, we find that fiber lengths are exponentially distributed, and propose a novel segmenting strategy to improve the load balance. On mid-range GPUs, we achieve performance gains up to 34x and 50x over CPUs for the two steps respectively.