Renato Vimieiro, Luis E. Zárate, E. M. Pereira, A. S. C. Diniz
{"title":"通过形式概念分析减少人工神经网络训练集的条目数及其在太阳能系统中的应用","authors":"Renato Vimieiro, Luis E. Zárate, E. M. Pereira, A. S. C. Diniz","doi":"10.1109/SMCIA.2005.1466965","DOIUrl":null,"url":null,"abstract":"The artificial intelligence has been developed in order to represent human knowledge in computers systems. It has two main fields: the symbolic field that works with symbolic data; and the connectionist field whose main example is artificial neural network and whose main characteristic is the capacity of learning by data samples. To obtain a high accuracy with generalization capacity net, the data set should cover all the problem possibilities. This situation can increase the time spent by the training process. Then, techniques for reducing the number of training sets preserving the representative characteristic are necessary. As formal concept analysis has been proposed as a powerful tool for data analysis, it has been used in this work as a way to reduce the training set elements number.","PeriodicalId":283950,"journal":{"name":"Proceedings of the 2005 IEEE Midnight-Summer Workshop on Soft Computing in Industrial Applications, 2005. SMCia/05.","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reduction of the entries number of the training set for ANN through formal concept analysis and its application to solar energy systems\",\"authors\":\"Renato Vimieiro, Luis E. Zárate, E. M. Pereira, A. S. C. Diniz\",\"doi\":\"10.1109/SMCIA.2005.1466965\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The artificial intelligence has been developed in order to represent human knowledge in computers systems. It has two main fields: the symbolic field that works with symbolic data; and the connectionist field whose main example is artificial neural network and whose main characteristic is the capacity of learning by data samples. To obtain a high accuracy with generalization capacity net, the data set should cover all the problem possibilities. This situation can increase the time spent by the training process. Then, techniques for reducing the number of training sets preserving the representative characteristic are necessary. As formal concept analysis has been proposed as a powerful tool for data analysis, it has been used in this work as a way to reduce the training set elements number.\",\"PeriodicalId\":283950,\"journal\":{\"name\":\"Proceedings of the 2005 IEEE Midnight-Summer Workshop on Soft Computing in Industrial Applications, 2005. SMCia/05.\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2005 IEEE Midnight-Summer Workshop on Soft Computing in Industrial Applications, 2005. SMCia/05.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMCIA.2005.1466965\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2005 IEEE Midnight-Summer Workshop on Soft Computing in Industrial Applications, 2005. SMCia/05.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMCIA.2005.1466965","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reduction of the entries number of the training set for ANN through formal concept analysis and its application to solar energy systems
The artificial intelligence has been developed in order to represent human knowledge in computers systems. It has two main fields: the symbolic field that works with symbolic data; and the connectionist field whose main example is artificial neural network and whose main characteristic is the capacity of learning by data samples. To obtain a high accuracy with generalization capacity net, the data set should cover all the problem possibilities. This situation can increase the time spent by the training process. Then, techniques for reducing the number of training sets preserving the representative characteristic are necessary. As formal concept analysis has been proposed as a powerful tool for data analysis, it has been used in this work as a way to reduce the training set elements number.