傅里叶主成分分析和鲁棒张量分解

Navin Goyal, S. Vempala, Ying Xiao
{"title":"傅里叶主成分分析和鲁棒张量分解","authors":"Navin Goyal, S. Vempala, Ying Xiao","doi":"10.1145/2591796.2591875","DOIUrl":null,"url":null,"abstract":"Fourier PCA is Principal Component Analysis of a matrix obtained from higher order derivatives of the logarithm of the Fourier transform of a distribution. To make this algorithmic, we develop a robust tensor decomposition method; this is also of independent interest. Our main application is the first provably polynomial-time algorithm for underdetermined ICA, i.e., learning an n × m matrix A from observations y = Ax where x is drawn from an unknown product distribution with arbitrary non-Gaussian components. The number of component distributions m can be arbitrarily higher than the dimension n and the columns of A only need to satisfy a natural and efficiently verifiable nondegeneracy condition. As a second application, we give an alternative algorithm for learning mixtures of spherical Gaussians with linearly independent means. These results also hold in the presence of Gaussian noise.","PeriodicalId":123501,"journal":{"name":"Proceedings of the forty-sixth annual ACM symposium on Theory of computing","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"89","resultStr":"{\"title\":\"Fourier PCA and robust tensor decomposition\",\"authors\":\"Navin Goyal, S. Vempala, Ying Xiao\",\"doi\":\"10.1145/2591796.2591875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fourier PCA is Principal Component Analysis of a matrix obtained from higher order derivatives of the logarithm of the Fourier transform of a distribution. To make this algorithmic, we develop a robust tensor decomposition method; this is also of independent interest. Our main application is the first provably polynomial-time algorithm for underdetermined ICA, i.e., learning an n × m matrix A from observations y = Ax where x is drawn from an unknown product distribution with arbitrary non-Gaussian components. The number of component distributions m can be arbitrarily higher than the dimension n and the columns of A only need to satisfy a natural and efficiently verifiable nondegeneracy condition. As a second application, we give an alternative algorithm for learning mixtures of spherical Gaussians with linearly independent means. These results also hold in the presence of Gaussian noise.\",\"PeriodicalId\":123501,\"journal\":{\"name\":\"Proceedings of the forty-sixth annual ACM symposium on Theory of computing\",\"volume\":\"117 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"89\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the forty-sixth annual ACM symposium on Theory of computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2591796.2591875\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the forty-sixth annual ACM symposium on Theory of computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2591796.2591875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 89

摘要

傅里叶主成分分析是由一个分布的傅里叶变换的对数的高阶导数得到的矩阵的主成分分析。为了实现该算法,我们开发了一种鲁棒张量分解方法;这也是一个独立的问题。我们的主要应用是对待定ICA的第一个可证明的多项式时间算法,即从观测值y = Ax中学习n × m矩阵A,其中x是从具有任意非高斯分量的未知积分布中绘制的。分量分布的个数m可以任意大于维数n, A的列只需要满足一个自然且有效可验证的非简并性条件即可。作为第二个应用,我们给出了一种替代算法来学习具有线性独立均值的球状高斯混合。这些结果在存在高斯噪声的情况下也成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fourier PCA and robust tensor decomposition
Fourier PCA is Principal Component Analysis of a matrix obtained from higher order derivatives of the logarithm of the Fourier transform of a distribution. To make this algorithmic, we develop a robust tensor decomposition method; this is also of independent interest. Our main application is the first provably polynomial-time algorithm for underdetermined ICA, i.e., learning an n × m matrix A from observations y = Ax where x is drawn from an unknown product distribution with arbitrary non-Gaussian components. The number of component distributions m can be arbitrarily higher than the dimension n and the columns of A only need to satisfy a natural and efficiently verifiable nondegeneracy condition. As a second application, we give an alternative algorithm for learning mixtures of spherical Gaussians with linearly independent means. These results also hold in the presence of Gaussian noise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信