Medline中两种生物医学分类查找方法的比较

Lana Yeganova, Won Kim, Donald C. Comeau, W. Wilbur
{"title":"Medline中两种生物医学分类查找方法的比较","authors":"Lana Yeganova, Won Kim, Donald C. Comeau, W. Wilbur","doi":"10.1109/ICMLA.2011.50","DOIUrl":null,"url":null,"abstract":"In this paper we describe and compare two methods for automatically learning meaningful biomedical categories in Medline®. The first approach is a simple statistical method that uses part-of-speech and frequency information to extract a list of frequent headwords from noun phrases in Medline. The second method implements an alignment-based technique to learn frequent generic patterns that indicate a hyponymy/hypernymy relationship between a pair of noun phrases. We then apply these patterns to Medline to collect frequent hypernyms, potential biomedical categories. We study and compare these two alternative sets of terms to identify semantic categories in Medline. Our method is completely data-driven.","PeriodicalId":439926,"journal":{"name":"2011 10th International Conference on Machine Learning and Applications and Workshops","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of Two Methods for Finding Biomedical Categories in Medline\",\"authors\":\"Lana Yeganova, Won Kim, Donald C. Comeau, W. Wilbur\",\"doi\":\"10.1109/ICMLA.2011.50\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we describe and compare two methods for automatically learning meaningful biomedical categories in Medline®. The first approach is a simple statistical method that uses part-of-speech and frequency information to extract a list of frequent headwords from noun phrases in Medline. The second method implements an alignment-based technique to learn frequent generic patterns that indicate a hyponymy/hypernymy relationship between a pair of noun phrases. We then apply these patterns to Medline to collect frequent hypernyms, potential biomedical categories. We study and compare these two alternative sets of terms to identify semantic categories in Medline. Our method is completely data-driven.\",\"PeriodicalId\":439926,\"journal\":{\"name\":\"2011 10th International Conference on Machine Learning and Applications and Workshops\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 10th International Conference on Machine Learning and Applications and Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2011.50\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 10th International Conference on Machine Learning and Applications and Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2011.50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们描述并比较了Medline®中自动学习有意义的生物医学类别的两种方法。第一种方法是一种简单的统计方法,它使用词性和频率信息从Medline的名词短语中提取频繁的标题词列表。第二种方法实现了一种基于对齐的技术,用于学习指示一对名词短语之间的上下位/上位关系的常见通用模式。然后,我们将这些模式应用于Medline,以收集频繁的中词,潜在的生物医学类别。我们研究并比较了这两组备选术语,以确定Medline中的语义类别。我们的方法完全是数据驱动的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of Two Methods for Finding Biomedical Categories in Medline
In this paper we describe and compare two methods for automatically learning meaningful biomedical categories in Medline®. The first approach is a simple statistical method that uses part-of-speech and frequency information to extract a list of frequent headwords from noun phrases in Medline. The second method implements an alignment-based technique to learn frequent generic patterns that indicate a hyponymy/hypernymy relationship between a pair of noun phrases. We then apply these patterns to Medline to collect frequent hypernyms, potential biomedical categories. We study and compare these two alternative sets of terms to identify semantic categories in Medline. Our method is completely data-driven.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信