基于语义层次的深度哈希大规模图像检索

Xuefei Zhe, Ou-Yang Le, Shifeng Chen, Hong Yan
{"title":"基于语义层次的深度哈希大规模图像检索","authors":"Xuefei Zhe, Ou-Yang Le, Shifeng Chen, Hong Yan","doi":"10.23919/MVA51890.2021.9511401","DOIUrl":null,"url":null,"abstract":"Deep hashing models have been proposed as an efficient method for large-scale similarity search. How-ever, most existing deep hashing methods only utilize fine-level labels for training while ignoring the natural semantic hierarchy structure. This paper presents an effective method that preserves the classwise similarity of full-level semantic hierarchy for large-scale image retrieval. Experiments on two benchmark datasets show that our method helps improve the fine-level retrieval performance. Moreover, with the help of the semantic hierarchy, it can produce significantly better binary codes for hierarchical retrieval, which indicates its potential of providing more user-desired retrieval results. The codes are available at https://github.com/mzhang367/hpdh.git.","PeriodicalId":312481,"journal":{"name":"2021 17th International Conference on Machine Vision and Applications (MVA)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Semantic Hierarchy Preserving Deep Hashing for Large-Scale Image Retrieval\",\"authors\":\"Xuefei Zhe, Ou-Yang Le, Shifeng Chen, Hong Yan\",\"doi\":\"10.23919/MVA51890.2021.9511401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep hashing models have been proposed as an efficient method for large-scale similarity search. How-ever, most existing deep hashing methods only utilize fine-level labels for training while ignoring the natural semantic hierarchy structure. This paper presents an effective method that preserves the classwise similarity of full-level semantic hierarchy for large-scale image retrieval. Experiments on two benchmark datasets show that our method helps improve the fine-level retrieval performance. Moreover, with the help of the semantic hierarchy, it can produce significantly better binary codes for hierarchical retrieval, which indicates its potential of providing more user-desired retrieval results. The codes are available at https://github.com/mzhang367/hpdh.git.\",\"PeriodicalId\":312481,\"journal\":{\"name\":\"2021 17th International Conference on Machine Vision and Applications (MVA)\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 17th International Conference on Machine Vision and Applications (MVA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/MVA51890.2021.9511401\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 17th International Conference on Machine Vision and Applications (MVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MVA51890.2021.9511401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

深度哈希模型作为一种有效的大规模相似度搜索方法被提出。然而,现有的深度哈希方法大多只利用精细标签进行训练,而忽略了自然的语义层次结构。提出了一种有效的保留全层语义层次分类相似性的大规模图像检索方法。在两个基准数据集上的实验表明,我们的方法有助于提高精细检索的性能。此外,在语义层次结构的帮助下,它可以产生更好的用于分层检索的二进制代码,这表明它具有提供更多用户期望的检索结果的潜力。代码可在https://github.com/mzhang367/hpdh.git上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semantic Hierarchy Preserving Deep Hashing for Large-Scale Image Retrieval
Deep hashing models have been proposed as an efficient method for large-scale similarity search. How-ever, most existing deep hashing methods only utilize fine-level labels for training while ignoring the natural semantic hierarchy structure. This paper presents an effective method that preserves the classwise similarity of full-level semantic hierarchy for large-scale image retrieval. Experiments on two benchmark datasets show that our method helps improve the fine-level retrieval performance. Moreover, with the help of the semantic hierarchy, it can produce significantly better binary codes for hierarchical retrieval, which indicates its potential of providing more user-desired retrieval results. The codes are available at https://github.com/mzhang367/hpdh.git.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信