块对角递归神经网络中轨迹学习的改进BPTT算法

S. Sivakumar, W. Robertson, W. Phillips
{"title":"块对角递归神经网络中轨迹学习的改进BPTT算法","authors":"S. Sivakumar, W. Robertson, W. Phillips","doi":"10.1109/CCECE.1997.614848","DOIUrl":null,"url":null,"abstract":"This paper deals with a discrete time recurrent neural network (DTRNN) with a block-diagonal feedback weight matrix, called the block-diagonal recurrent neural network (BDRNN), that allows a simplified approach to online trajectory learning. The BDRNN is a sparse but structured architecture in which the feedback connections are restricted to between pairs of state variables. The block-diagonal structure of the BDRNN is exploited to modify the backpropagation-through-time (BPTT) algorithm to reduce the storage requirements while still maintaining exactness and locality of gradient computation. To achieve this, a numerically stable method for recomputing the state variables in the backward pass of the BPTT algorithm is presented.","PeriodicalId":359446,"journal":{"name":"CCECE '97. Canadian Conference on Electrical and Computer Engineering. Engineering Innovation: Voyage of Discovery. Conference Proceedings","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A modified BPTT algorithm for trajectory learning in block-diagonal recurrent neural networks\",\"authors\":\"S. Sivakumar, W. Robertson, W. Phillips\",\"doi\":\"10.1109/CCECE.1997.614848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with a discrete time recurrent neural network (DTRNN) with a block-diagonal feedback weight matrix, called the block-diagonal recurrent neural network (BDRNN), that allows a simplified approach to online trajectory learning. The BDRNN is a sparse but structured architecture in which the feedback connections are restricted to between pairs of state variables. The block-diagonal structure of the BDRNN is exploited to modify the backpropagation-through-time (BPTT) algorithm to reduce the storage requirements while still maintaining exactness and locality of gradient computation. To achieve this, a numerically stable method for recomputing the state variables in the backward pass of the BPTT algorithm is presented.\",\"PeriodicalId\":359446,\"journal\":{\"name\":\"CCECE '97. Canadian Conference on Electrical and Computer Engineering. Engineering Innovation: Voyage of Discovery. Conference Proceedings\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CCECE '97. Canadian Conference on Electrical and Computer Engineering. Engineering Innovation: Voyage of Discovery. Conference Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCECE.1997.614848\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CCECE '97. Canadian Conference on Electrical and Computer Engineering. Engineering Innovation: Voyage of Discovery. Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCECE.1997.614848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了一种具有块对角反馈权矩阵的离散时间递归神经网络(DTRNN),称为块对角递归神经网络(BDRNN),它允许一种简化的在线轨迹学习方法。BDRNN是一种稀疏但结构化的体系结构,其中反馈连接仅限于状态变量对之间。利用BDRNN的块对角结构对反向传播-穿越时间(BPTT)算法进行改进,在保持梯度计算的准确性和局域性的同时减少存储需求。为了实现这一目标,提出了一种数值稳定的方法来重新计算BPTT算法逆向传递中的状态变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A modified BPTT algorithm for trajectory learning in block-diagonal recurrent neural networks
This paper deals with a discrete time recurrent neural network (DTRNN) with a block-diagonal feedback weight matrix, called the block-diagonal recurrent neural network (BDRNN), that allows a simplified approach to online trajectory learning. The BDRNN is a sparse but structured architecture in which the feedback connections are restricted to between pairs of state variables. The block-diagonal structure of the BDRNN is exploited to modify the backpropagation-through-time (BPTT) algorithm to reduce the storage requirements while still maintaining exactness and locality of gradient computation. To achieve this, a numerically stable method for recomputing the state variables in the backward pass of the BPTT algorithm is presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信