可分离BRDF的高效球面调和遮光

Pierre Mézières, M. Paulin
{"title":"可分离BRDF的高效球面调和遮光","authors":"Pierre Mézières, M. Paulin","doi":"10.1145/3478512.3488597","DOIUrl":null,"url":null,"abstract":"Spherical Harmonics (SH) are commonly and widely used in computer graphics in order to speed up the evaluation of the rendering equation. With separable BRDF, the diffuse and specular contributions are traditionally computed separately. Our first contribution is to demonstrate that there is a simple relationship between both computations, but one-way, i.e. from specular to diffuse. We show how to deduce the diffuse contribution from the specular contribution, using a single multiplication. This replaces the use of tens of multiplications for some cases up to complex rotations for other cases. Our second contribution is an efficient way to compute the SH product between an arbitrary function and a clamped cosine, much less expensive than the traditional SH triple product.","PeriodicalId":156290,"journal":{"name":"SIGGRAPH Asia 2021 Technical Communications","volume":"88 16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Efficient spherical harmonic shading for separable BRDF\",\"authors\":\"Pierre Mézières, M. Paulin\",\"doi\":\"10.1145/3478512.3488597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spherical Harmonics (SH) are commonly and widely used in computer graphics in order to speed up the evaluation of the rendering equation. With separable BRDF, the diffuse and specular contributions are traditionally computed separately. Our first contribution is to demonstrate that there is a simple relationship between both computations, but one-way, i.e. from specular to diffuse. We show how to deduce the diffuse contribution from the specular contribution, using a single multiplication. This replaces the use of tens of multiplications for some cases up to complex rotations for other cases. Our second contribution is an efficient way to compute the SH product between an arbitrary function and a clamped cosine, much less expensive than the traditional SH triple product.\",\"PeriodicalId\":156290,\"journal\":{\"name\":\"SIGGRAPH Asia 2021 Technical Communications\",\"volume\":\"88 16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGGRAPH Asia 2021 Technical Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3478512.3488597\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGGRAPH Asia 2021 Technical Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3478512.3488597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

球面谐波(SH)在计算机图形学中得到了广泛的应用,以加快绘制方程的求解速度。对于可分离的BRDF,漫射和镜面的贡献通常是分开计算的。我们的第一个贡献是证明两种计算之间有一个简单的关系,但是单向的,即从镜面到漫射。我们展示了如何从镜面贡献中推断出漫射贡献,使用单个乘法。这取代了在某些情况下使用数十次乘法,以及在其他情况下使用复杂旋转。我们的第二个贡献是一种计算任意函数和固定余弦之间的SH积的有效方法,比传统的SH三重积便宜得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient spherical harmonic shading for separable BRDF
Spherical Harmonics (SH) are commonly and widely used in computer graphics in order to speed up the evaluation of the rendering equation. With separable BRDF, the diffuse and specular contributions are traditionally computed separately. Our first contribution is to demonstrate that there is a simple relationship between both computations, but one-way, i.e. from specular to diffuse. We show how to deduce the diffuse contribution from the specular contribution, using a single multiplication. This replaces the use of tens of multiplications for some cases up to complex rotations for other cases. Our second contribution is an efficient way to compute the SH product between an arbitrary function and a clamped cosine, much less expensive than the traditional SH triple product.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信