Lei Li, Dingding Wang, Tao Li, Daniel Knox, B. Padmanabhan
{"title":"SCENE:一个可扩展的两阶段个性化新闻推荐系统","authors":"Lei Li, Dingding Wang, Tao Li, Daniel Knox, B. Padmanabhan","doi":"10.1145/2009916.2009937","DOIUrl":null,"url":null,"abstract":"Recommending news articles has become a promising research direction as the Internet provides fast access to real-time information from multiple sources around the world. Traditional news recommendation systems strive to adapt their services to individual users by virtue of both user and news content information. However, the latent relationships among different news items, and the special properties of new articles, such as short shelf lives and value of immediacy, render the previous approaches inefficient. In this paper, we propose a scalable two-stage personalized news recommendation approach with a two-level representation, which considers the exclusive characteristics (e.g., news content, access patterns, named entities, popularity and recency) of news items when performing recommendation. Also, a principled framework for news selection based on the intrinsic property of user interest is presented, with a good balance between the novelty and diversity of the recommended result. Extensive empirical experiments on a collection of news articles obtained from various news websites demonstrate the efficacy and efficiency of our approach.","PeriodicalId":356580,"journal":{"name":"Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval","volume":"88 14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"233","resultStr":"{\"title\":\"SCENE: a scalable two-stage personalized news recommendation system\",\"authors\":\"Lei Li, Dingding Wang, Tao Li, Daniel Knox, B. Padmanabhan\",\"doi\":\"10.1145/2009916.2009937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recommending news articles has become a promising research direction as the Internet provides fast access to real-time information from multiple sources around the world. Traditional news recommendation systems strive to adapt their services to individual users by virtue of both user and news content information. However, the latent relationships among different news items, and the special properties of new articles, such as short shelf lives and value of immediacy, render the previous approaches inefficient. In this paper, we propose a scalable two-stage personalized news recommendation approach with a two-level representation, which considers the exclusive characteristics (e.g., news content, access patterns, named entities, popularity and recency) of news items when performing recommendation. Also, a principled framework for news selection based on the intrinsic property of user interest is presented, with a good balance between the novelty and diversity of the recommended result. Extensive empirical experiments on a collection of news articles obtained from various news websites demonstrate the efficacy and efficiency of our approach.\",\"PeriodicalId\":356580,\"journal\":{\"name\":\"Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval\",\"volume\":\"88 14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"233\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2009916.2009937\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2009916.2009937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SCENE: a scalable two-stage personalized news recommendation system
Recommending news articles has become a promising research direction as the Internet provides fast access to real-time information from multiple sources around the world. Traditional news recommendation systems strive to adapt their services to individual users by virtue of both user and news content information. However, the latent relationships among different news items, and the special properties of new articles, such as short shelf lives and value of immediacy, render the previous approaches inefficient. In this paper, we propose a scalable two-stage personalized news recommendation approach with a two-level representation, which considers the exclusive characteristics (e.g., news content, access patterns, named entities, popularity and recency) of news items when performing recommendation. Also, a principled framework for news selection based on the intrinsic property of user interest is presented, with a good balance between the novelty and diversity of the recommended result. Extensive empirical experiments on a collection of news articles obtained from various news websites demonstrate the efficacy and efficiency of our approach.