一种改进的基于指标的进化算法

Wenwen Li, E. Özcan, R. John, J. Drake, Aneta Neumann, Markus Wagner
{"title":"一种改进的基于指标的进化算法","authors":"Wenwen Li, E. Özcan, R. John, J. Drake, Aneta Neumann, Markus Wagner","doi":"10.1109/CEC.2017.7969423","DOIUrl":null,"url":null,"abstract":"Multi-objective evolutionary algorithms (MOEAs) based on the concept of Pareto-dominance have been successfully applied to many real-world optimisation problems. Recently, research interest has shifted towards indicator-based methods to guide the search process towards a good set of trade-off solutions. One commonly used approach of this nature is the indicator-based evolutionary algorithm (IBEA). In this study, we highlight the solution distribution issues within IBEA and propose a modification of the original approach by embedding an additional Pareto-dominance based component for selection. The improved performance of the proposed modified IBEA (mIBEA) is empirically demonstrated on the well-known DTLZ set of benchmark functions. Our results show that mIBEA achieves comparable or better hypervolume indicator values and epsilon approximation values in the vast majority of our cases (13 out of 14 under the same default settings) on DTLZ1-7. The modification also results in an over 8-fold speed-up for larger populations.","PeriodicalId":335123,"journal":{"name":"2017 IEEE Congress on Evolutionary Computation (CEC)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"A modified indicator-based evolutionary algorithm (mIBEA)\",\"authors\":\"Wenwen Li, E. Özcan, R. John, J. Drake, Aneta Neumann, Markus Wagner\",\"doi\":\"10.1109/CEC.2017.7969423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-objective evolutionary algorithms (MOEAs) based on the concept of Pareto-dominance have been successfully applied to many real-world optimisation problems. Recently, research interest has shifted towards indicator-based methods to guide the search process towards a good set of trade-off solutions. One commonly used approach of this nature is the indicator-based evolutionary algorithm (IBEA). In this study, we highlight the solution distribution issues within IBEA and propose a modification of the original approach by embedding an additional Pareto-dominance based component for selection. The improved performance of the proposed modified IBEA (mIBEA) is empirically demonstrated on the well-known DTLZ set of benchmark functions. Our results show that mIBEA achieves comparable or better hypervolume indicator values and epsilon approximation values in the vast majority of our cases (13 out of 14 under the same default settings) on DTLZ1-7. The modification also results in an over 8-fold speed-up for larger populations.\",\"PeriodicalId\":335123,\"journal\":{\"name\":\"2017 IEEE Congress on Evolutionary Computation (CEC)\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Congress on Evolutionary Computation (CEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2017.7969423\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2017.7969423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

基于帕累托优势概念的多目标进化算法(moea)已经成功地应用于许多现实世界的优化问题。最近,研究兴趣转向了基于指标的方法,以指导搜索过程走向一组良好的权衡解决方案。这种性质的一种常用方法是基于指示符的进化算法(IBEA)。在本研究中,我们强调了IBEA中的解决方案分布问题,并提出了对原始方法的修改,通过嵌入一个额外的基于帕累托优势的选择组件。在著名的DTLZ基准函数集上,对改进后的IBEA (mIBEA)的性能进行了实证验证。我们的结果表明,在DTLZ1-7上的绝大多数情况下(在相同默认设置下的14个案例中有13个),mIBEA实现了相当或更好的超容量指示值和epsilon近似值。对于更大的人口,这种修改也导致了超过8倍的速度提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A modified indicator-based evolutionary algorithm (mIBEA)
Multi-objective evolutionary algorithms (MOEAs) based on the concept of Pareto-dominance have been successfully applied to many real-world optimisation problems. Recently, research interest has shifted towards indicator-based methods to guide the search process towards a good set of trade-off solutions. One commonly used approach of this nature is the indicator-based evolutionary algorithm (IBEA). In this study, we highlight the solution distribution issues within IBEA and propose a modification of the original approach by embedding an additional Pareto-dominance based component for selection. The improved performance of the proposed modified IBEA (mIBEA) is empirically demonstrated on the well-known DTLZ set of benchmark functions. Our results show that mIBEA achieves comparable or better hypervolume indicator values and epsilon approximation values in the vast majority of our cases (13 out of 14 under the same default settings) on DTLZ1-7. The modification also results in an over 8-fold speed-up for larger populations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信