延时系统的实时数字控制:从史密斯预测器到MPC

Radek Holis, V. Bobál, J. Vojtesek
{"title":"延时系统的实时数字控制:从史密斯预测器到MPC","authors":"Radek Holis, V. Bobál, J. Vojtesek","doi":"10.1109/ICE.2017.8279897","DOIUrl":null,"url":null,"abstract":"Many processes in industry exhibit time-delay in their dynamic behavior. Time-delay is mainly caused by the time required to transport energy, information or mass, but it can be caused by processing time as well. The typical process with time-delay is a heat exchanger that is a specialized device that assists in the transfer of heat from one fluid to the other. This paper deals with design of universal digital controller algorithms for control of a great deal of processes with time-delay. The first algorithm is realized by the digital Smith Predictor (SP) based on polynomial approach — Linear Quadratic (LQ) method. The second algorithm utilizes Model Predictive Control (MPC) approach with the possibility of measurable disturbance compensation. Both control principles were tested by a real-time control of an experimental laboratory heat exchanger.","PeriodicalId":421648,"journal":{"name":"2017 International Conference on Engineering, Technology and Innovation (ICE/ITMC)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Real-time digital control of time-delay systems: From smith predictor to MPC\",\"authors\":\"Radek Holis, V. Bobál, J. Vojtesek\",\"doi\":\"10.1109/ICE.2017.8279897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many processes in industry exhibit time-delay in their dynamic behavior. Time-delay is mainly caused by the time required to transport energy, information or mass, but it can be caused by processing time as well. The typical process with time-delay is a heat exchanger that is a specialized device that assists in the transfer of heat from one fluid to the other. This paper deals with design of universal digital controller algorithms for control of a great deal of processes with time-delay. The first algorithm is realized by the digital Smith Predictor (SP) based on polynomial approach — Linear Quadratic (LQ) method. The second algorithm utilizes Model Predictive Control (MPC) approach with the possibility of measurable disturbance compensation. Both control principles were tested by a real-time control of an experimental laboratory heat exchanger.\",\"PeriodicalId\":421648,\"journal\":{\"name\":\"2017 International Conference on Engineering, Technology and Innovation (ICE/ITMC)\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Engineering, Technology and Innovation (ICE/ITMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICE.2017.8279897\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Engineering, Technology and Innovation (ICE/ITMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICE.2017.8279897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

工业中许多过程的动态行为具有时滞性。时间延迟主要由传输能量、信息或质量所需的时间引起,但也可能由处理时间引起。典型的时滞过程是热交换器,它是一种专门的设备,帮助热量从一种流体传递到另一种流体。本文研究了用于大量时滞过程控制的通用数字控制器算法的设计。第一种算法是基于多项式方法-线性二次(LQ)方法的数字Smith Predictor (SP)实现的。第二种算法采用模型预测控制(MPC)方法,具有可测量干扰补偿的可能性。通过对实验室热交换器的实时控制,验证了两种控制原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-time digital control of time-delay systems: From smith predictor to MPC
Many processes in industry exhibit time-delay in their dynamic behavior. Time-delay is mainly caused by the time required to transport energy, information or mass, but it can be caused by processing time as well. The typical process with time-delay is a heat exchanger that is a specialized device that assists in the transfer of heat from one fluid to the other. This paper deals with design of universal digital controller algorithms for control of a great deal of processes with time-delay. The first algorithm is realized by the digital Smith Predictor (SP) based on polynomial approach — Linear Quadratic (LQ) method. The second algorithm utilizes Model Predictive Control (MPC) approach with the possibility of measurable disturbance compensation. Both control principles were tested by a real-time control of an experimental laboratory heat exchanger.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信