{"title":"用于检测适配体-蛋白结合的膜化学机械传感器","authors":"Jun-kyu Choi, Junghoon Lee","doi":"10.1109/MEMSYS.2015.7050926","DOIUrl":null,"url":null,"abstract":"We report a membrane-based chemomechanical transducer for the sensitive detection of surface molecular reaction through a highly reliable common mode rejection (CMR) technique. Chemomechanical transduction, originally based on the micro-cantilever, offers potential benefits: label-free assay, and real-time monitoring of molecular interaction via mechanical deformation [1, 2]. Membrane-based approaches have been proposed to overcome the inherent limitations of the micro-cantilever system, but most results were either inconclusive or far from practical standards. Here we show clear-cut detection of molecular binding using a membrane transducer fabricated with conventional MEMS technology. This goal is achieved through the implementation of CMR that rejects physical effects such as pressure and temperature, leaving only specific chemical binding responsible for resulting signal. We demonstrate highly specific recognition of thrombin protein by using DNA aptamer immobilized on the membrane surface with the limit of detection down to ~3 pM, and the wide dynamic range > 5×104.","PeriodicalId":337894,"journal":{"name":"2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Membrane-based chemomechanical transducer for the detection of aptamer-protein binding\",\"authors\":\"Jun-kyu Choi, Junghoon Lee\",\"doi\":\"10.1109/MEMSYS.2015.7050926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report a membrane-based chemomechanical transducer for the sensitive detection of surface molecular reaction through a highly reliable common mode rejection (CMR) technique. Chemomechanical transduction, originally based on the micro-cantilever, offers potential benefits: label-free assay, and real-time monitoring of molecular interaction via mechanical deformation [1, 2]. Membrane-based approaches have been proposed to overcome the inherent limitations of the micro-cantilever system, but most results were either inconclusive or far from practical standards. Here we show clear-cut detection of molecular binding using a membrane transducer fabricated with conventional MEMS technology. This goal is achieved through the implementation of CMR that rejects physical effects such as pressure and temperature, leaving only specific chemical binding responsible for resulting signal. We demonstrate highly specific recognition of thrombin protein by using DNA aptamer immobilized on the membrane surface with the limit of detection down to ~3 pM, and the wide dynamic range > 5×104.\",\"PeriodicalId\":337894,\"journal\":{\"name\":\"2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS)\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMSYS.2015.7050926\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2015.7050926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Membrane-based chemomechanical transducer for the detection of aptamer-protein binding
We report a membrane-based chemomechanical transducer for the sensitive detection of surface molecular reaction through a highly reliable common mode rejection (CMR) technique. Chemomechanical transduction, originally based on the micro-cantilever, offers potential benefits: label-free assay, and real-time monitoring of molecular interaction via mechanical deformation [1, 2]. Membrane-based approaches have been proposed to overcome the inherent limitations of the micro-cantilever system, but most results were either inconclusive or far from practical standards. Here we show clear-cut detection of molecular binding using a membrane transducer fabricated with conventional MEMS technology. This goal is achieved through the implementation of CMR that rejects physical effects such as pressure and temperature, leaving only specific chemical binding responsible for resulting signal. We demonstrate highly specific recognition of thrombin protein by using DNA aptamer immobilized on the membrane surface with the limit of detection down to ~3 pM, and the wide dynamic range > 5×104.