{"title":"基于电阻阻抗的流式细胞术的建模和设计考虑","authors":"Jacob Dawes, Jinwon Kim, M. Johnston","doi":"10.1109/SENSORS47125.2020.9278939","DOIUrl":null,"url":null,"abstract":"Recent developments in impedance-based flow cytometry have shown it to be a promising alternative to conventional optical approaches for point-of-care (POC) applications. While analysis tools such as finite element analysis provide unique insight for designers of such systems, they provide limited utility for system-level design and are computationally prohibitive for large design space explorations. In this work, an electrical model is presented for resistive impedance-based cytometry to inform system-level design choices such as bandwidth requirements and to provide a flexible way of simulating particle transits for arbitrary arrangements of particles and electrodes. The model is validated using measured results from a microfluidic flow cell.","PeriodicalId":338240,"journal":{"name":"2020 IEEE Sensors","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modeling and Design Considerations for Resistive Impedance-Based Flow Cytometry\",\"authors\":\"Jacob Dawes, Jinwon Kim, M. Johnston\",\"doi\":\"10.1109/SENSORS47125.2020.9278939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent developments in impedance-based flow cytometry have shown it to be a promising alternative to conventional optical approaches for point-of-care (POC) applications. While analysis tools such as finite element analysis provide unique insight for designers of such systems, they provide limited utility for system-level design and are computationally prohibitive for large design space explorations. In this work, an electrical model is presented for resistive impedance-based cytometry to inform system-level design choices such as bandwidth requirements and to provide a flexible way of simulating particle transits for arbitrary arrangements of particles and electrodes. The model is validated using measured results from a microfluidic flow cell.\",\"PeriodicalId\":338240,\"journal\":{\"name\":\"2020 IEEE Sensors\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Sensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SENSORS47125.2020.9278939\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSORS47125.2020.9278939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modeling and Design Considerations for Resistive Impedance-Based Flow Cytometry
Recent developments in impedance-based flow cytometry have shown it to be a promising alternative to conventional optical approaches for point-of-care (POC) applications. While analysis tools such as finite element analysis provide unique insight for designers of such systems, they provide limited utility for system-level design and are computationally prohibitive for large design space explorations. In this work, an electrical model is presented for resistive impedance-based cytometry to inform system-level design choices such as bandwidth requirements and to provide a flexible way of simulating particle transits for arbitrary arrangements of particles and electrodes. The model is validated using measured results from a microfluidic flow cell.