支持HPC弹性的非参数多变量异常分析

G. Ostrouchov, T. Naughton, C. Engelmann, G. Vallee, S. L. Scott
{"title":"支持HPC弹性的非参数多变量异常分析","authors":"G. Ostrouchov, T. Naughton, C. Engelmann, G. Vallee, S. L. Scott","doi":"10.1109/ESCIW.2009.5407992","DOIUrl":null,"url":null,"abstract":"Large-scale computing systems provide great potential for scientific exploration. However, the complexity that accompanies these enormous machines raises challenges for both, users and operators. The effective use of such systems is often hampered by failures encountered when running applications on systems containing tens-of-thousands of nodes and hundreds-of-thousands of compute cores capable of yielding petaflops of performance. In systems of this size failure detection is complicated and root-cause diagnosis difficult. This paper describes our recent work in the identification of anomalies in monitoring data and system logs to provide further insights into machine status, runtime behavior, failure modes and failure root causes. It discusses the details of an initial prototype that gathers the data and uses statistical techniques for analysis.","PeriodicalId":416133,"journal":{"name":"2009 5th IEEE International Conference on E-Science Workshops","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Nonparametric multivariate anomaly analysis in support of HPC resilience\",\"authors\":\"G. Ostrouchov, T. Naughton, C. Engelmann, G. Vallee, S. L. Scott\",\"doi\":\"10.1109/ESCIW.2009.5407992\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large-scale computing systems provide great potential for scientific exploration. However, the complexity that accompanies these enormous machines raises challenges for both, users and operators. The effective use of such systems is often hampered by failures encountered when running applications on systems containing tens-of-thousands of nodes and hundreds-of-thousands of compute cores capable of yielding petaflops of performance. In systems of this size failure detection is complicated and root-cause diagnosis difficult. This paper describes our recent work in the identification of anomalies in monitoring data and system logs to provide further insights into machine status, runtime behavior, failure modes and failure root causes. It discusses the details of an initial prototype that gathers the data and uses statistical techniques for analysis.\",\"PeriodicalId\":416133,\"journal\":{\"name\":\"2009 5th IEEE International Conference on E-Science Workshops\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 5th IEEE International Conference on E-Science Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESCIW.2009.5407992\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 5th IEEE International Conference on E-Science Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESCIW.2009.5407992","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

大规模计算系统提供科学勘探潜力巨大。然而,伴随着这些巨大机器的复杂性给用户和操作员都带来了挑战。当在包含数万个节点和数十万个计算核心的系统上运行应用程序时,这些系统的有效使用经常受到故障的阻碍,这些计算核心能够产生千万亿次的性能。在这种规模的系统中,故障检测是复杂的,根本原因诊断是困难的。本文描述了我们最近在监测数据和系统日志异常识别方面的工作,以进一步了解机器状态、运行时行为、故障模式和故障根本原因。它讨论了收集数据并使用统计技术进行分析的初始原型的细节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonparametric multivariate anomaly analysis in support of HPC resilience
Large-scale computing systems provide great potential for scientific exploration. However, the complexity that accompanies these enormous machines raises challenges for both, users and operators. The effective use of such systems is often hampered by failures encountered when running applications on systems containing tens-of-thousands of nodes and hundreds-of-thousands of compute cores capable of yielding petaflops of performance. In systems of this size failure detection is complicated and root-cause diagnosis difficult. This paper describes our recent work in the identification of anomalies in monitoring data and system logs to provide further insights into machine status, runtime behavior, failure modes and failure root causes. It discusses the details of an initial prototype that gathers the data and uses statistical techniques for analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信