几何块模型及其应用

Sainyam Galhotra, S. Pal, A. Mazumdar, B. Saha
{"title":"几何块模型及其应用","authors":"Sainyam Galhotra, S. Pal, A. Mazumdar, B. Saha","doi":"10.1109/ALLERTON.2018.8635938","DOIUrl":null,"url":null,"abstract":"This is a note accompanying an invited talk at the Allerton conference where we summarize our results related to geometric block model (GBM), a random graph model for communities in networks that is based on geometric graphs. The GBM is distinguished from many other community models because of correlated edge formation, which makes GBM less random in nature, but more complicated to analyze. On the algorithmic side, we describe a simple triangle-counting process that performs sequential edge removal from the graph to reveal the communities. The algorithm critically uses the connectivity properties of annulus graphs or vertex-random graphs.","PeriodicalId":299280,"journal":{"name":"2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","volume":"331 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Geometric Block Model and Applications\",\"authors\":\"Sainyam Galhotra, S. Pal, A. Mazumdar, B. Saha\",\"doi\":\"10.1109/ALLERTON.2018.8635938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This is a note accompanying an invited talk at the Allerton conference where we summarize our results related to geometric block model (GBM), a random graph model for communities in networks that is based on geometric graphs. The GBM is distinguished from many other community models because of correlated edge formation, which makes GBM less random in nature, but more complicated to analyze. On the algorithmic side, we describe a simple triangle-counting process that performs sequential edge removal from the graph to reveal the communities. The algorithm critically uses the connectivity properties of annulus graphs or vertex-random graphs.\",\"PeriodicalId\":299280,\"journal\":{\"name\":\"2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton)\",\"volume\":\"331 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ALLERTON.2018.8635938\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2018.8635938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在Allerton会议上,我们总结了与几何块模型(GBM)相关的结果,这是一种基于几何图的网络社区随机图模型。GBM不同于许多其他的群落模型,因为其边缘的形成是相关的,这使得GBM在本质上不具有随机性,但分析起来更加复杂。在算法方面,我们描述了一个简单的三角形计数过程,该过程从图中执行顺序边缘去除以显示社区。该算法充分利用了环图或顶点随机图的连通性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Geometric Block Model and Applications
This is a note accompanying an invited talk at the Allerton conference where we summarize our results related to geometric block model (GBM), a random graph model for communities in networks that is based on geometric graphs. The GBM is distinguished from many other community models because of correlated edge formation, which makes GBM less random in nature, but more complicated to analyze. On the algorithmic side, we describe a simple triangle-counting process that performs sequential edge removal from the graph to reveal the communities. The algorithm critically uses the connectivity properties of annulus graphs or vertex-random graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信