具有纤维边界度量的流形上的光谱几何I:低能量分辨

D. Grieser, Mohammad Talebi, Boris Vertman
{"title":"具有纤维边界度量的流形上的光谱几何I:低能量分辨","authors":"D. Grieser, Mohammad Talebi, Boris Vertman","doi":"10.5802/jep.198","DOIUrl":null,"url":null,"abstract":"We study the low energy resolvent of the Hodge Laplacian on a manifold equipped with a fibred boundary metric. We determine the precise asymptotic behavior of the resolvent as a fibred boundary (aka $\\phi$-) pseudodifferential operator when the resolvent parameter tends to zero. This generalizes previous work by Guillarmou and Sher who considered asymptotically conic metrics, which correspond to the special case when the fibres are points. The new feature in the case of non-trivial fibres is that the resolvent has different asymptotic behavior on the subspace of forms that are fibrewise harmonic and on its orthogonal complement. To deal with this, we introduce an appropriate 'split' pseudodifferential calculus, building on and extending work by Grieser and Hunsicker. Our work sets the basis for the discussion of spectral invariants on $\\phi$-manifolds.","PeriodicalId":106406,"journal":{"name":"Journal de l’École polytechnique — Mathématiques","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Spectral geometry on manifolds with fibered boundary metrics I: Low energy resolvent\",\"authors\":\"D. Grieser, Mohammad Talebi, Boris Vertman\",\"doi\":\"10.5802/jep.198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the low energy resolvent of the Hodge Laplacian on a manifold equipped with a fibred boundary metric. We determine the precise asymptotic behavior of the resolvent as a fibred boundary (aka $\\\\phi$-) pseudodifferential operator when the resolvent parameter tends to zero. This generalizes previous work by Guillarmou and Sher who considered asymptotically conic metrics, which correspond to the special case when the fibres are points. The new feature in the case of non-trivial fibres is that the resolvent has different asymptotic behavior on the subspace of forms that are fibrewise harmonic and on its orthogonal complement. To deal with this, we introduce an appropriate 'split' pseudodifferential calculus, building on and extending work by Grieser and Hunsicker. Our work sets the basis for the discussion of spectral invariants on $\\\\phi$-manifolds.\",\"PeriodicalId\":106406,\"journal\":{\"name\":\"Journal de l’École polytechnique — Mathématiques\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de l’École polytechnique — Mathématiques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/jep.198\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de l’École polytechnique — Mathématiques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/jep.198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

研究了带有纤维边界度量的流形上霍奇拉普拉斯算子的低能解。当解析参数趋于零时,我们确定解析函数作为纤维边界(又名$\phi$-)伪微分算子的精确渐近行为。这概括了Guillarmou和Sher之前的研究,他们考虑了渐近二次指标,这对应于纤维是点的特殊情况。在非平凡纤维情况下的新特征是,解在纤维调和形式的子空间及其正交补上具有不同的渐近行为。为了解决这个问题,我们在Grieser和Hunsicker的工作的基础上,引入了一个适当的“分裂”伪微分学。我们的工作为讨论$\ φ $-流形上的谱不变量奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectral geometry on manifolds with fibered boundary metrics I: Low energy resolvent
We study the low energy resolvent of the Hodge Laplacian on a manifold equipped with a fibred boundary metric. We determine the precise asymptotic behavior of the resolvent as a fibred boundary (aka $\phi$-) pseudodifferential operator when the resolvent parameter tends to zero. This generalizes previous work by Guillarmou and Sher who considered asymptotically conic metrics, which correspond to the special case when the fibres are points. The new feature in the case of non-trivial fibres is that the resolvent has different asymptotic behavior on the subspace of forms that are fibrewise harmonic and on its orthogonal complement. To deal with this, we introduce an appropriate 'split' pseudodifferential calculus, building on and extending work by Grieser and Hunsicker. Our work sets the basis for the discussion of spectral invariants on $\phi$-manifolds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信