{"title":"具有纤维边界度量的流形上的光谱几何I:低能量分辨","authors":"D. Grieser, Mohammad Talebi, Boris Vertman","doi":"10.5802/jep.198","DOIUrl":null,"url":null,"abstract":"We study the low energy resolvent of the Hodge Laplacian on a manifold equipped with a fibred boundary metric. We determine the precise asymptotic behavior of the resolvent as a fibred boundary (aka $\\phi$-) pseudodifferential operator when the resolvent parameter tends to zero. This generalizes previous work by Guillarmou and Sher who considered asymptotically conic metrics, which correspond to the special case when the fibres are points. The new feature in the case of non-trivial fibres is that the resolvent has different asymptotic behavior on the subspace of forms that are fibrewise harmonic and on its orthogonal complement. To deal with this, we introduce an appropriate 'split' pseudodifferential calculus, building on and extending work by Grieser and Hunsicker. Our work sets the basis for the discussion of spectral invariants on $\\phi$-manifolds.","PeriodicalId":106406,"journal":{"name":"Journal de l’École polytechnique — Mathématiques","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Spectral geometry on manifolds with fibered boundary metrics I: Low energy resolvent\",\"authors\":\"D. Grieser, Mohammad Talebi, Boris Vertman\",\"doi\":\"10.5802/jep.198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the low energy resolvent of the Hodge Laplacian on a manifold equipped with a fibred boundary metric. We determine the precise asymptotic behavior of the resolvent as a fibred boundary (aka $\\\\phi$-) pseudodifferential operator when the resolvent parameter tends to zero. This generalizes previous work by Guillarmou and Sher who considered asymptotically conic metrics, which correspond to the special case when the fibres are points. The new feature in the case of non-trivial fibres is that the resolvent has different asymptotic behavior on the subspace of forms that are fibrewise harmonic and on its orthogonal complement. To deal with this, we introduce an appropriate 'split' pseudodifferential calculus, building on and extending work by Grieser and Hunsicker. Our work sets the basis for the discussion of spectral invariants on $\\\\phi$-manifolds.\",\"PeriodicalId\":106406,\"journal\":{\"name\":\"Journal de l’École polytechnique — Mathématiques\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de l’École polytechnique — Mathématiques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/jep.198\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de l’École polytechnique — Mathématiques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/jep.198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Spectral geometry on manifolds with fibered boundary metrics I: Low energy resolvent
We study the low energy resolvent of the Hodge Laplacian on a manifold equipped with a fibred boundary metric. We determine the precise asymptotic behavior of the resolvent as a fibred boundary (aka $\phi$-) pseudodifferential operator when the resolvent parameter tends to zero. This generalizes previous work by Guillarmou and Sher who considered asymptotically conic metrics, which correspond to the special case when the fibres are points. The new feature in the case of non-trivial fibres is that the resolvent has different asymptotic behavior on the subspace of forms that are fibrewise harmonic and on its orthogonal complement. To deal with this, we introduce an appropriate 'split' pseudodifferential calculus, building on and extending work by Grieser and Hunsicker. Our work sets the basis for the discussion of spectral invariants on $\phi$-manifolds.