基于交叉小波变换的局部放电信号特征提取方法

D. Dey, B. Chatterjee, S. Chakravorti, S. Munshi
{"title":"基于交叉小波变换的局部放电信号特征提取方法","authors":"D. Dey, B. Chatterjee, S. Chakravorti, S. Munshi","doi":"10.1109/INDCON.2008.4768774","DOIUrl":null,"url":null,"abstract":"Partial discharge detection and classification are important for safety and reliability of power equipment. A novel cross-wavelet transform based technique is used in this work for feature extraction from partial discharge signals. Results show that cross-wavelet transform eliminates the effect of random, real-life noises and therefore the partial discharge patterns can be classified properly from the noisy waveforms. Different partial discharge patterns are recorded from the various samples prepared with known defects. Features are extracted from the raw noisy data and a rough-set based classifier is used to classify the patterns. Efficient classification of the patterns justifies the approach.","PeriodicalId":196254,"journal":{"name":"2008 Annual IEEE India Conference","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cross-wavelet transform based feature extraction for classification of noisy partial discharge signals\",\"authors\":\"D. Dey, B. Chatterjee, S. Chakravorti, S. Munshi\",\"doi\":\"10.1109/INDCON.2008.4768774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Partial discharge detection and classification are important for safety and reliability of power equipment. A novel cross-wavelet transform based technique is used in this work for feature extraction from partial discharge signals. Results show that cross-wavelet transform eliminates the effect of random, real-life noises and therefore the partial discharge patterns can be classified properly from the noisy waveforms. Different partial discharge patterns are recorded from the various samples prepared with known defects. Features are extracted from the raw noisy data and a rough-set based classifier is used to classify the patterns. Efficient classification of the patterns justifies the approach.\",\"PeriodicalId\":196254,\"journal\":{\"name\":\"2008 Annual IEEE India Conference\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Annual IEEE India Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDCON.2008.4768774\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Annual IEEE India Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDCON.2008.4768774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

局部放电检测与分类对电力设备的安全可靠运行具有重要意义。本文提出了一种基于交叉小波变换的局部放电信号特征提取方法。结果表明,交叉小波变换消除了随机、现实噪声的影响,能较好地从噪声波形中分离出局部放电模式。从已知缺陷制备的各种样品中记录不同的局部放电模式。从原始噪声数据中提取特征,并使用基于粗糙集的分类器对模式进行分类。模式的有效分类证明了这种方法的合理性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cross-wavelet transform based feature extraction for classification of noisy partial discharge signals
Partial discharge detection and classification are important for safety and reliability of power equipment. A novel cross-wavelet transform based technique is used in this work for feature extraction from partial discharge signals. Results show that cross-wavelet transform eliminates the effect of random, real-life noises and therefore the partial discharge patterns can be classified properly from the noisy waveforms. Different partial discharge patterns are recorded from the various samples prepared with known defects. Features are extracted from the raw noisy data and a rough-set based classifier is used to classify the patterns. Efficient classification of the patterns justifies the approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信