植入式肌电传感器系统:标准化asic设计

G. DeMichele, P. Troyk, D. Kerns, R. Weir
{"title":"植入式肌电传感器系统:标准化asic设计","authors":"G. DeMichele, P. Troyk, D. Kerns, R. Weir","doi":"10.1109/BIOCAS.2008.4696888","DOIUrl":null,"url":null,"abstract":"As a component of the RP2009 project, the IMES system has emerged as a strong candidate for extracting naturally-occurring control signals to be used for providing functional control of an upper body artificial limb. In earlier publications, we described various elements of this system as they were being researched and developed. Presently, the system has matured to a level for which it is now appropriate to consider application-specific-integrated circuits (ASIC) that are of a standardized form, and are suitable for clinical deployment of the IMES system. Here we describe one of our emerging ASIC designs that addresses the design challenges of the extracoporal transmitter controller. Although this ASIC is used in the IMES system, it may also be used for any command protocol that requires FSK modulation of a Class E converter.","PeriodicalId":415200,"journal":{"name":"2008 IEEE Biomedical Circuits and Systems Conference","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"IMES - implantable myoElectric sensor system: Designing standardized ASICs\",\"authors\":\"G. DeMichele, P. Troyk, D. Kerns, R. Weir\",\"doi\":\"10.1109/BIOCAS.2008.4696888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a component of the RP2009 project, the IMES system has emerged as a strong candidate for extracting naturally-occurring control signals to be used for providing functional control of an upper body artificial limb. In earlier publications, we described various elements of this system as they were being researched and developed. Presently, the system has matured to a level for which it is now appropriate to consider application-specific-integrated circuits (ASIC) that are of a standardized form, and are suitable for clinical deployment of the IMES system. Here we describe one of our emerging ASIC designs that addresses the design challenges of the extracoporal transmitter controller. Although this ASIC is used in the IMES system, it may also be used for any command protocol that requires FSK modulation of a Class E converter.\",\"PeriodicalId\":415200,\"journal\":{\"name\":\"2008 IEEE Biomedical Circuits and Systems Conference\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE Biomedical Circuits and Systems Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIOCAS.2008.4696888\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Biomedical Circuits and Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2008.4696888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

作为RP2009项目的一个组成部分,IMES系统已成为提取自然发生的控制信号的有力候选,用于提供上肢假肢的功能控制。在早期的出版物中,我们描述了正在研究和开发的这个系统的各种元素。目前,该系统已经成熟到可以考虑采用标准化形式的专用集成电路(ASIC)的水平,并且适合临床部署IMES系统。在这里,我们描述了我们新兴的ASIC设计之一,它解决了口外发送器控制器的设计挑战。虽然这种ASIC用于IMES系统,但它也可以用于任何需要E类转换器的FSK调制的命令协议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
IMES - implantable myoElectric sensor system: Designing standardized ASICs
As a component of the RP2009 project, the IMES system has emerged as a strong candidate for extracting naturally-occurring control signals to be used for providing functional control of an upper body artificial limb. In earlier publications, we described various elements of this system as they were being researched and developed. Presently, the system has matured to a level for which it is now appropriate to consider application-specific-integrated circuits (ASIC) that are of a standardized form, and are suitable for clinical deployment of the IMES system. Here we describe one of our emerging ASIC designs that addresses the design challenges of the extracoporal transmitter controller. Although this ASIC is used in the IMES system, it may also be used for any command protocol that requires FSK modulation of a Class E converter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信