基于自编码器和层次模糊分类的自动人格感知

E. J. Zaferani, M. Teshnehlab, Mansoor Vali
{"title":"基于自编码器和层次模糊分类的自动人格感知","authors":"E. J. Zaferani, M. Teshnehlab, Mansoor Vali","doi":"10.1109/CSICC52343.2021.9420627","DOIUrl":null,"url":null,"abstract":"In this research, a study of automatic personality perception based on the Big-five Inventory (BFI) is done. To extract and select appropriate features for the classification, we employ an auto-encoder as a nonlinear feature learning technique. Since an auto-encoder does not extract proper classification lonely, a saddle point is found by a stop criterion based on maximum separate ability in binary classes. The results reveal that nonlinear features enhance the classification results in most personality traits. Furthermore, we use an adaptive neuro-fuzzy inference system classification to model the uncertainty rooted in mental states and affect the classification results through the extracted features. The classification outcomes on SSPNet Speaker Personality dataset demonstrate significant improvement in the results of four traits. These outgrowths verify the existence of uncertainty in the speech signal.","PeriodicalId":374593,"journal":{"name":"2021 26th International Computer Conference, Computer Society of Iran (CSICC)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Automatic Personality Perception Using Autoencoder And Hierarchical Fuzzy Classification\",\"authors\":\"E. J. Zaferani, M. Teshnehlab, Mansoor Vali\",\"doi\":\"10.1109/CSICC52343.2021.9420627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research, a study of automatic personality perception based on the Big-five Inventory (BFI) is done. To extract and select appropriate features for the classification, we employ an auto-encoder as a nonlinear feature learning technique. Since an auto-encoder does not extract proper classification lonely, a saddle point is found by a stop criterion based on maximum separate ability in binary classes. The results reveal that nonlinear features enhance the classification results in most personality traits. Furthermore, we use an adaptive neuro-fuzzy inference system classification to model the uncertainty rooted in mental states and affect the classification results through the extracted features. The classification outcomes on SSPNet Speaker Personality dataset demonstrate significant improvement in the results of four traits. These outgrowths verify the existence of uncertainty in the speech signal.\",\"PeriodicalId\":374593,\"journal\":{\"name\":\"2021 26th International Computer Conference, Computer Society of Iran (CSICC)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 26th International Computer Conference, Computer Society of Iran (CSICC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSICC52343.2021.9420627\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 26th International Computer Conference, Computer Society of Iran (CSICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSICC52343.2021.9420627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本研究对基于大五人格量表(BFI)的自动人格知觉进行了研究。为了提取和选择合适的特征进行分类,我们采用自编码器作为非线性特征学习技术。由于自编码器不能提取适当的分类孤独,因此根据二分类中最大分离能力的停止准则找到鞍点。结果表明,非线性特征增强了大多数人格特征的分类结果。此外,我们使用自适应神经模糊推理系统对根植于心理状态的不确定性进行建模,并通过提取的特征影响分类结果。在SSPNet说话人人格数据集上的分类结果显示,四个特征的分类结果有显著改善。这些结果验证了语音信号中不确定性的存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Personality Perception Using Autoencoder And Hierarchical Fuzzy Classification
In this research, a study of automatic personality perception based on the Big-five Inventory (BFI) is done. To extract and select appropriate features for the classification, we employ an auto-encoder as a nonlinear feature learning technique. Since an auto-encoder does not extract proper classification lonely, a saddle point is found by a stop criterion based on maximum separate ability in binary classes. The results reveal that nonlinear features enhance the classification results in most personality traits. Furthermore, we use an adaptive neuro-fuzzy inference system classification to model the uncertainty rooted in mental states and affect the classification results through the extracted features. The classification outcomes on SSPNet Speaker Personality dataset demonstrate significant improvement in the results of four traits. These outgrowths verify the existence of uncertainty in the speech signal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信