用线性代价计算Wasserstein-$p$图像之间的距离

Yidong Chen, Chen Li, Z. Lu
{"title":"用线性代价计算Wasserstein-$p$图像之间的距离","authors":"Yidong Chen, Chen Li, Z. Lu","doi":"10.1109/CVPR52688.2022.00060","DOIUrl":null,"url":null,"abstract":"When the images are formulated as discrete measures, computing Wasserstein-p distance between them is challenging due to the complexity of solving the corresponding Kantorovich's problem. In this paper, we propose a novel algorithm to compute the Wasserstein-p distance between discrete measures by restricting the optimal transport (OT) problem on a subset. First, we define the restricted OT problem and prove the solution of the restricted problem converges to Kantorovich's OT solution. Second, we propose the SparseSinkhorn algorithm for the restricted problem and provide a multi-scale algorithm to estimate the subset. Finally, we implement the proposed algorithm on CUDA and illustrate the linear computational cost in terms of time and memory requirements. We compute Wasserstein-p distance, estimate the transport mapping, and transfer color between color images with size ranges from $64\\times 64$ to $1920\\times 1200$. (Our code is available at https://github.com/ucascnic/CudaOT)","PeriodicalId":355552,"journal":{"name":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Computing Wasserstein-$p$ Distance Between Images with Linear Cost\",\"authors\":\"Yidong Chen, Chen Li, Z. Lu\",\"doi\":\"10.1109/CVPR52688.2022.00060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When the images are formulated as discrete measures, computing Wasserstein-p distance between them is challenging due to the complexity of solving the corresponding Kantorovich's problem. In this paper, we propose a novel algorithm to compute the Wasserstein-p distance between discrete measures by restricting the optimal transport (OT) problem on a subset. First, we define the restricted OT problem and prove the solution of the restricted problem converges to Kantorovich's OT solution. Second, we propose the SparseSinkhorn algorithm for the restricted problem and provide a multi-scale algorithm to estimate the subset. Finally, we implement the proposed algorithm on CUDA and illustrate the linear computational cost in terms of time and memory requirements. We compute Wasserstein-p distance, estimate the transport mapping, and transfer color between color images with size ranges from $64\\\\times 64$ to $1920\\\\times 1200$. (Our code is available at https://github.com/ucascnic/CudaOT)\",\"PeriodicalId\":355552,\"journal\":{\"name\":\"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR52688.2022.00060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR52688.2022.00060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

当图像被表述为离散度量时,由于解决相应的Kantorovich问题的复杂性,计算它们之间的Wasserstein-p距离是具有挑战性的。在本文中,我们提出了一种新的算法,通过限制子集上的最优传输(OT)问题来计算离散测度之间的Wasserstein-p距离。首先定义了受限OT问题,并证明了受限问题的解收敛于Kantorovich的OT解。其次,我们针对受限问题提出了SparseSinkhorn算法,并提供了一个多尺度的子集估计算法。最后,我们在CUDA上实现了所提出的算法,并从时间和内存需求方面说明了线性计算成本。我们计算Wasserstein-p距离,估计传输映射,并在大小范围从$64\ × 64$到$1920\ × 1200$的彩色图像之间传输颜色。(我们的代码可在https://github.com/ucascnic/CudaOT找到)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computing Wasserstein-$p$ Distance Between Images with Linear Cost
When the images are formulated as discrete measures, computing Wasserstein-p distance between them is challenging due to the complexity of solving the corresponding Kantorovich's problem. In this paper, we propose a novel algorithm to compute the Wasserstein-p distance between discrete measures by restricting the optimal transport (OT) problem on a subset. First, we define the restricted OT problem and prove the solution of the restricted problem converges to Kantorovich's OT solution. Second, we propose the SparseSinkhorn algorithm for the restricted problem and provide a multi-scale algorithm to estimate the subset. Finally, we implement the proposed algorithm on CUDA and illustrate the linear computational cost in terms of time and memory requirements. We compute Wasserstein-p distance, estimate the transport mapping, and transfer color between color images with size ranges from $64\times 64$ to $1920\times 1200$. (Our code is available at https://github.com/ucascnic/CudaOT)
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信