一种新的鲁棒序列部分更新最小均值m估计自适应滤波算法

Yi Zhou, S. Chan, K. Ho
{"title":"一种新的鲁棒序列部分更新最小均值m估计自适应滤波算法","authors":"Yi Zhou, S. Chan, K. Ho","doi":"10.1109/APCCAS.2008.4745992","DOIUrl":null,"url":null,"abstract":"The sequential-LMS (S-LMS) family of algorithms are designed for partial update adaptive filtering. Like the LMS algorithm, their performance will be severely degraded by impulsive noises. In this paper, we derive the nonlinear least mean M-estimate (LMM) versions of the S-LMS family from robust M-estimation. The resultant algorithms, named the S-LMM family, have the improved performance in impulsive noise environment. Using the Pricepsilas theorem and its extension, the mean and mean square convergence behaviors of the S-LMS and S-LMM families of algorithms are derived both for Gaussian and contaminated Gaussian (CG) additive noises.","PeriodicalId":344917,"journal":{"name":"APCCAS 2008 - 2008 IEEE Asia Pacific Conference on Circuits and Systems","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A new family of robust sequential partial update least mean M-estimate adaptive filtering algorithms\",\"authors\":\"Yi Zhou, S. Chan, K. Ho\",\"doi\":\"10.1109/APCCAS.2008.4745992\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The sequential-LMS (S-LMS) family of algorithms are designed for partial update adaptive filtering. Like the LMS algorithm, their performance will be severely degraded by impulsive noises. In this paper, we derive the nonlinear least mean M-estimate (LMM) versions of the S-LMS family from robust M-estimation. The resultant algorithms, named the S-LMM family, have the improved performance in impulsive noise environment. Using the Pricepsilas theorem and its extension, the mean and mean square convergence behaviors of the S-LMS and S-LMM families of algorithms are derived both for Gaussian and contaminated Gaussian (CG) additive noises.\",\"PeriodicalId\":344917,\"journal\":{\"name\":\"APCCAS 2008 - 2008 IEEE Asia Pacific Conference on Circuits and Systems\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"APCCAS 2008 - 2008 IEEE Asia Pacific Conference on Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APCCAS.2008.4745992\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"APCCAS 2008 - 2008 IEEE Asia Pacific Conference on Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCCAS.2008.4745992","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

时序lms (S-LMS)算法族是针对部分更新自适应滤波而设计的。与LMS算法一样,它们的性能也会受到脉冲噪声的严重影响。本文从稳健m估计出发,导出了S-LMS族的非线性最小均值m估计(LMM)版本。所得到的S-LMM系列算法在脉冲噪声环境下具有较好的性能。利用Pricepsilas定理及其推广,导出了S-LMS和S-LMM算法族在高斯和污染高斯(CG)加性噪声下的平均收敛性和均方收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new family of robust sequential partial update least mean M-estimate adaptive filtering algorithms
The sequential-LMS (S-LMS) family of algorithms are designed for partial update adaptive filtering. Like the LMS algorithm, their performance will be severely degraded by impulsive noises. In this paper, we derive the nonlinear least mean M-estimate (LMM) versions of the S-LMS family from robust M-estimation. The resultant algorithms, named the S-LMM family, have the improved performance in impulsive noise environment. Using the Pricepsilas theorem and its extension, the mean and mean square convergence behaviors of the S-LMS and S-LMM families of algorithms are derived both for Gaussian and contaminated Gaussian (CG) additive noises.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信