自动视频分析与边缘计算

Apostolos Galanopoulos, J. Ayala-Romero, D. Leith, G. Iosifidis
{"title":"自动视频分析与边缘计算","authors":"Apostolos Galanopoulos, J. Ayala-Romero, D. Leith, G. Iosifidis","doi":"10.1109/INFOCOM42981.2021.9488704","DOIUrl":null,"url":null,"abstract":"Video analytics constitute a core component of many wireless services that require processing of voluminous data streams emanating from handheld devices. Multi-Access Edge Computing (MEC) is a promising solution for supporting such resource-hungry services, but there is a plethora of configuration parameters affecting their performance in an unknown and possibly time-varying fashion. To overcome this obstacle, we propose an Automated Machine Learning (AutoML) framework for jointly configuring the service and wireless network parameters, towards maximizing the analytics’ accuracy subject to minimum frame rate constraints. Our experiments with a bespoke prototype reveal the volatile and system/data-dependent performance of the service, and motivate the development of a Bayesian online learning algorithm which optimizes on-the-fly the service performance. We prove that our solution is guaranteed to find a near-optimal configuration using safe exploration, i.e., without ever violating the set frame rate thresholds. We use our testbed to further evaluate this AutoML framework in a variety of scenarios, using real datasets.","PeriodicalId":293079,"journal":{"name":"IEEE INFOCOM 2021 - IEEE Conference on Computer Communications","volume":"139 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"AutoML for Video Analytics with Edge Computing\",\"authors\":\"Apostolos Galanopoulos, J. Ayala-Romero, D. Leith, G. Iosifidis\",\"doi\":\"10.1109/INFOCOM42981.2021.9488704\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Video analytics constitute a core component of many wireless services that require processing of voluminous data streams emanating from handheld devices. Multi-Access Edge Computing (MEC) is a promising solution for supporting such resource-hungry services, but there is a plethora of configuration parameters affecting their performance in an unknown and possibly time-varying fashion. To overcome this obstacle, we propose an Automated Machine Learning (AutoML) framework for jointly configuring the service and wireless network parameters, towards maximizing the analytics’ accuracy subject to minimum frame rate constraints. Our experiments with a bespoke prototype reveal the volatile and system/data-dependent performance of the service, and motivate the development of a Bayesian online learning algorithm which optimizes on-the-fly the service performance. We prove that our solution is guaranteed to find a near-optimal configuration using safe exploration, i.e., without ever violating the set frame rate thresholds. We use our testbed to further evaluate this AutoML framework in a variety of scenarios, using real datasets.\",\"PeriodicalId\":293079,\"journal\":{\"name\":\"IEEE INFOCOM 2021 - IEEE Conference on Computer Communications\",\"volume\":\"139 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE INFOCOM 2021 - IEEE Conference on Computer Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFOCOM42981.2021.9488704\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE INFOCOM 2021 - IEEE Conference on Computer Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOCOM42981.2021.9488704","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

视频分析构成了许多无线服务的核心组件,这些服务需要处理来自手持设备的大量数据流。多访问边缘计算(Multi-Access Edge Computing, MEC)是一种很有前途的解决方案,可用于支持此类资源匮乏的服务,但是有太多的配置参数会以未知的、可能随时间变化的方式影响其性能。为了克服这一障碍,我们提出了一个自动机器学习(AutoML)框架,用于联合配置服务和无线网络参数,在最小帧率约束下最大化分析的准确性。我们对定制原型的实验揭示了服务的波动性和系统/数据依赖性能,并激发了贝叶斯在线学习算法的开发,该算法可以优化实时服务性能。我们证明了我们的解决方案保证使用安全探索找到接近最优的配置,即,在不违反设置的帧率阈值的情况下。我们使用我们的测试平台,使用真实的数据集,在各种场景中进一步评估这个AutoML框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AutoML for Video Analytics with Edge Computing
Video analytics constitute a core component of many wireless services that require processing of voluminous data streams emanating from handheld devices. Multi-Access Edge Computing (MEC) is a promising solution for supporting such resource-hungry services, but there is a plethora of configuration parameters affecting their performance in an unknown and possibly time-varying fashion. To overcome this obstacle, we propose an Automated Machine Learning (AutoML) framework for jointly configuring the service and wireless network parameters, towards maximizing the analytics’ accuracy subject to minimum frame rate constraints. Our experiments with a bespoke prototype reveal the volatile and system/data-dependent performance of the service, and motivate the development of a Bayesian online learning algorithm which optimizes on-the-fly the service performance. We prove that our solution is guaranteed to find a near-optimal configuration using safe exploration, i.e., without ever violating the set frame rate thresholds. We use our testbed to further evaluate this AutoML framework in a variety of scenarios, using real datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信