基于近红外光谱的烟草种植区支持向量机鉴别器

Lin Xie, Panwenjie, Simon X. Yang
{"title":"基于近红外光谱的烟草种植区支持向量机鉴别器","authors":"Lin Xie, Panwenjie, Simon X. Yang","doi":"10.1109/ICAL.2012.6308164","DOIUrl":null,"url":null,"abstract":"The tobacco growing area is of great importance in the quality control of cigarette, because the fragrance of tobacco leaves would be divergent for different climates planting environments. Currently, most of discrimination processes are manually operated, which are time-consuming and inevitably limited by the subjective evaluation. In this paper, an automatic growing area discrimination method is presented based on tobacco near-infrared (NIR) spectrum using support vector machine (SVM). The Savitzky-Golay smoothing method and principle component analysis are used for tobacco NIR spectra preprocessing. A SVM model is established to investigate the characteristics of growing areas. The developed SVM classifier produces the best prediction accuracy of 80.3% in testing subset with 14 principle components as the inputs. It is 6% and 2% higher than that of artificial neuron network and Mahalanobia distance model respectively, which were developed for comparison. It demonstrates the effectiveness and robustness of SVM for growing area discrimination. The prediction ability for each growing region is further analyzed by the measurements derived from confusion matrix, such as true positive rate, true negative rate, positive predictive value and F1 score. The SVM setting is also discussed with respect to prediction accuracy of validation.","PeriodicalId":373152,"journal":{"name":"2012 IEEE International Conference on Automation and Logistics","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A support vector machine discriminator for tobacco growing areas based on near-infrared spectrum\",\"authors\":\"Lin Xie, Panwenjie, Simon X. Yang\",\"doi\":\"10.1109/ICAL.2012.6308164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The tobacco growing area is of great importance in the quality control of cigarette, because the fragrance of tobacco leaves would be divergent for different climates planting environments. Currently, most of discrimination processes are manually operated, which are time-consuming and inevitably limited by the subjective evaluation. In this paper, an automatic growing area discrimination method is presented based on tobacco near-infrared (NIR) spectrum using support vector machine (SVM). The Savitzky-Golay smoothing method and principle component analysis are used for tobacco NIR spectra preprocessing. A SVM model is established to investigate the characteristics of growing areas. The developed SVM classifier produces the best prediction accuracy of 80.3% in testing subset with 14 principle components as the inputs. It is 6% and 2% higher than that of artificial neuron network and Mahalanobia distance model respectively, which were developed for comparison. It demonstrates the effectiveness and robustness of SVM for growing area discrimination. The prediction ability for each growing region is further analyzed by the measurements derived from confusion matrix, such as true positive rate, true negative rate, positive predictive value and F1 score. The SVM setting is also discussed with respect to prediction accuracy of validation.\",\"PeriodicalId\":373152,\"journal\":{\"name\":\"2012 IEEE International Conference on Automation and Logistics\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Automation and Logistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAL.2012.6308164\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Automation and Logistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAL.2012.6308164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

烟草种植区对卷烟质量控制具有重要意义,因为不同的气候、种植环境会产生不同的烟叶香味。目前,大多数的识别过程都是人工操作的,费时且不可避免地受到主观评价的限制。提出了一种基于烟草近红外(NIR)光谱的支持向量机(SVM)自动生长区域识别方法。采用Savitzky-Golay平滑法和主成分分析法对烟草近红外光谱进行预处理。建立支持向量机模型,研究种植区特征。在以14个主成分为输入的测试子集中,所开发的SVM分类器的预测准确率最高,达到80.3%。比人工神经元网络和马氏距离模型分别高出6%和2%。验证了支持向量机用于生长区域识别的有效性和鲁棒性。通过混淆矩阵得出的真阳性率、真阴性率、阳性预测值和F1评分等测量值,进一步分析各生长期的预测能力。讨论了支持向量机的设置对验证预测精度的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A support vector machine discriminator for tobacco growing areas based on near-infrared spectrum
The tobacco growing area is of great importance in the quality control of cigarette, because the fragrance of tobacco leaves would be divergent for different climates planting environments. Currently, most of discrimination processes are manually operated, which are time-consuming and inevitably limited by the subjective evaluation. In this paper, an automatic growing area discrimination method is presented based on tobacco near-infrared (NIR) spectrum using support vector machine (SVM). The Savitzky-Golay smoothing method and principle component analysis are used for tobacco NIR spectra preprocessing. A SVM model is established to investigate the characteristics of growing areas. The developed SVM classifier produces the best prediction accuracy of 80.3% in testing subset with 14 principle components as the inputs. It is 6% and 2% higher than that of artificial neuron network and Mahalanobia distance model respectively, which were developed for comparison. It demonstrates the effectiveness and robustness of SVM for growing area discrimination. The prediction ability for each growing region is further analyzed by the measurements derived from confusion matrix, such as true positive rate, true negative rate, positive predictive value and F1 score. The SVM setting is also discussed with respect to prediction accuracy of validation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信