有限自动机群的字问题

Maximilian Kotowsky, Jan Philipp Wächter
{"title":"有限自动机群的字问题","authors":"Maximilian Kotowsky, Jan Philipp Wächter","doi":"10.48550/arXiv.2302.10670","DOIUrl":null,"url":null,"abstract":"A finitary automaton group is a group generated by an invertible, deterministic finite-state letter-to-letter transducer whose only cycles are self-loops at an identity state. We show that, for this presentation of finite groups, the uniform word problem is coNP-complete. Here, the input consists of a finitary automaton together with a finite state sequence and the question is whether the sequence acts trivially on all input words. Additionally, we also show that the respective compressed word problem, where the state sequence is given as a straight-line program, is PSPACE-complete. In both cases, we give a direct reduction from the satisfiablity problem for (quantified) boolean formulae.","PeriodicalId":305919,"journal":{"name":"Workshop on Descriptional Complexity of Formal Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Word Problem for Finitary Automaton Groups\",\"authors\":\"Maximilian Kotowsky, Jan Philipp Wächter\",\"doi\":\"10.48550/arXiv.2302.10670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A finitary automaton group is a group generated by an invertible, deterministic finite-state letter-to-letter transducer whose only cycles are self-loops at an identity state. We show that, for this presentation of finite groups, the uniform word problem is coNP-complete. Here, the input consists of a finitary automaton together with a finite state sequence and the question is whether the sequence acts trivially on all input words. Additionally, we also show that the respective compressed word problem, where the state sequence is given as a straight-line program, is PSPACE-complete. In both cases, we give a direct reduction from the satisfiablity problem for (quantified) boolean formulae.\",\"PeriodicalId\":305919,\"journal\":{\"name\":\"Workshop on Descriptional Complexity of Formal Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Descriptional Complexity of Formal Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2302.10670\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Descriptional Complexity of Formal Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2302.10670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

有限自动机群是由可逆的、确定性的有限状态字母到字母的换能器产生的群,其唯一周期是在恒等状态下的自环。我们证明,对于有限群的这种表示,一致字问题是conp完全的。这里,输入由有限自动机和有限状态序列组成,问题是该序列是否对所有输入单词都起作用。此外,我们还证明了相应的压缩词问题是pspace完备的,其中状态序列是作为直线程序给出的。在这两种情况下,我们给出了(量化)布尔公式的可满足性问题的直接简化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Word Problem for Finitary Automaton Groups
A finitary automaton group is a group generated by an invertible, deterministic finite-state letter-to-letter transducer whose only cycles are self-loops at an identity state. We show that, for this presentation of finite groups, the uniform word problem is coNP-complete. Here, the input consists of a finitary automaton together with a finite state sequence and the question is whether the sequence acts trivially on all input words. Additionally, we also show that the respective compressed word problem, where the state sequence is given as a straight-line program, is PSPACE-complete. In both cases, we give a direct reduction from the satisfiablity problem for (quantified) boolean formulae.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信