Tsubasa Hirakawa, Takayoshi Yamashita, K. Yoda, Toru Tamaki, H. Fujiyoshi
{"title":"基于旅行时变最大熵逆强化学习的海鸟轨迹预测","authors":"Tsubasa Hirakawa, Takayoshi Yamashita, K. Yoda, Toru Tamaki, H. Fujiyoshi","doi":"10.1109/ACPR.2017.20","DOIUrl":null,"url":null,"abstract":"Trajectory prediction is a challenging problem in the fields of computer vision, robotics, and machine learning, and a number of methods for trajectory prediction have been proposed. Most methods generate trajectories that move toward a goal in a straight line (goal-directed) while avoiding obstacles. However, there are not only such goal-directed trajectories but also trajectories that taking detours to reach the goal (non-goal-directed). In this paper, we propose a method of predicting such non-goal-directed trajectories based on the maximum entropy inverse reinforcement learning framework. Our method introduces travel time as a state of the Markov decision process. As a practical example, we apply the proposed method to seabird trajectories measured using global positioning system loggers. Experimental results show that the proposed method can effectively predict non-goal-directed trajectories.","PeriodicalId":426561,"journal":{"name":"2017 4th IAPR Asian Conference on Pattern Recognition (ACPR)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Travel Time-Dependent Maximum Entropy Inverse Reinforcement Learning for Seabird Trajectory Prediction\",\"authors\":\"Tsubasa Hirakawa, Takayoshi Yamashita, K. Yoda, Toru Tamaki, H. Fujiyoshi\",\"doi\":\"10.1109/ACPR.2017.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Trajectory prediction is a challenging problem in the fields of computer vision, robotics, and machine learning, and a number of methods for trajectory prediction have been proposed. Most methods generate trajectories that move toward a goal in a straight line (goal-directed) while avoiding obstacles. However, there are not only such goal-directed trajectories but also trajectories that taking detours to reach the goal (non-goal-directed). In this paper, we propose a method of predicting such non-goal-directed trajectories based on the maximum entropy inverse reinforcement learning framework. Our method introduces travel time as a state of the Markov decision process. As a practical example, we apply the proposed method to seabird trajectories measured using global positioning system loggers. Experimental results show that the proposed method can effectively predict non-goal-directed trajectories.\",\"PeriodicalId\":426561,\"journal\":{\"name\":\"2017 4th IAPR Asian Conference on Pattern Recognition (ACPR)\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 4th IAPR Asian Conference on Pattern Recognition (ACPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACPR.2017.20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 4th IAPR Asian Conference on Pattern Recognition (ACPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2017.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Travel Time-Dependent Maximum Entropy Inverse Reinforcement Learning for Seabird Trajectory Prediction
Trajectory prediction is a challenging problem in the fields of computer vision, robotics, and machine learning, and a number of methods for trajectory prediction have been proposed. Most methods generate trajectories that move toward a goal in a straight line (goal-directed) while avoiding obstacles. However, there are not only such goal-directed trajectories but also trajectories that taking detours to reach the goal (non-goal-directed). In this paper, we propose a method of predicting such non-goal-directed trajectories based on the maximum entropy inverse reinforcement learning framework. Our method introduces travel time as a state of the Markov decision process. As a practical example, we apply the proposed method to seabird trajectories measured using global positioning system loggers. Experimental results show that the proposed method can effectively predict non-goal-directed trajectories.