线性离散正系统的极限区间卡尔曼滤波器设计

D. Krokavec, A. Filasová
{"title":"线性离散正系统的极限区间卡尔曼滤波器设计","authors":"D. Krokavec, A. Filasová","doi":"10.1109/ICCAD49821.2020.9260539","DOIUrl":null,"url":null,"abstract":"For linear discrete-time positive systems the paper proposes an approach reflecting structural system constraints and positiveness in solving the problem of limiting interval Kalman filter design. System dynamics and parameter constraints are represented in the form of linear matrix inequalities to guarantee parameters boundaries and asymptotic stability of the filter. The general theoretical results are illustrated by a numerical example to assess the feasibility of the proposed technique.","PeriodicalId":270320,"journal":{"name":"2020 International Conference on Control, Automation and Diagnosis (ICCAD)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Limiting Interval Kalman Filter Design for Linear Discrete-time Positive Systems\",\"authors\":\"D. Krokavec, A. Filasová\",\"doi\":\"10.1109/ICCAD49821.2020.9260539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For linear discrete-time positive systems the paper proposes an approach reflecting structural system constraints and positiveness in solving the problem of limiting interval Kalman filter design. System dynamics and parameter constraints are represented in the form of linear matrix inequalities to guarantee parameters boundaries and asymptotic stability of the filter. The general theoretical results are illustrated by a numerical example to assess the feasibility of the proposed technique.\",\"PeriodicalId\":270320,\"journal\":{\"name\":\"2020 International Conference on Control, Automation and Diagnosis (ICCAD)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Control, Automation and Diagnosis (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAD49821.2020.9260539\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Control, Automation and Diagnosis (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD49821.2020.9260539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

对于线性离散正系统,本文提出了一种反映结构系统约束和正性的方法来解决极限区间卡尔曼滤波器设计问题。系统动力学和参数约束以线性矩阵不等式的形式表示,以保证滤波器的参数边界和渐近稳定性。通过数值算例说明了一般理论结果,以评估所提技术的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Limiting Interval Kalman Filter Design for Linear Discrete-time Positive Systems
For linear discrete-time positive systems the paper proposes an approach reflecting structural system constraints and positiveness in solving the problem of limiting interval Kalman filter design. System dynamics and parameter constraints are represented in the form of linear matrix inequalities to guarantee parameters boundaries and asymptotic stability of the filter. The general theoretical results are illustrated by a numerical example to assess the feasibility of the proposed technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信