PMP-NET:重新思考场景图形生成的视觉环境

Xuezhi Tong, Rui Wang, Chuan Wang, Sanyi Zhang, Xiaochun Cao
{"title":"PMP-NET:重新思考场景图形生成的视觉环境","authors":"Xuezhi Tong, Rui Wang, Chuan Wang, Sanyi Zhang, Xiaochun Cao","doi":"10.1109/icassp43922.2022.9747415","DOIUrl":null,"url":null,"abstract":"Scene graph generation aims to describe the contents in scenes by identifying the objects and their relationships. In previous works, visual context is widely utilized in message passing networks to generate the representations for classification. However, the noisy estimation of visual context limits model performance. In this paper, we revisit the concept of incorporating visual context via a randomly ordered bidirectional Long Short Temporal Memory (biLSTM) based baseline, and show that noisy estimation is worse than random. To alleviate the problem, we propose a new method, dubbed Progressive Message Passing Network (PMP-Net) that better estimates the visual context in a coarse to fine manner. Specifically, we first estimate the visual context with a random initiated scene graph, then refine it with multi-head attention. The experimental results on the benchmark dataset Visual Genome show that PMP-Net achieves better or comparable performance on all three tasks: scene graph generation (SGGen), scene graph classification (SGCls), and predicate classification (PredCls).","PeriodicalId":272439,"journal":{"name":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"PMP-NET: Rethinking Visual Context for Scene Graph Generation\",\"authors\":\"Xuezhi Tong, Rui Wang, Chuan Wang, Sanyi Zhang, Xiaochun Cao\",\"doi\":\"10.1109/icassp43922.2022.9747415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scene graph generation aims to describe the contents in scenes by identifying the objects and their relationships. In previous works, visual context is widely utilized in message passing networks to generate the representations for classification. However, the noisy estimation of visual context limits model performance. In this paper, we revisit the concept of incorporating visual context via a randomly ordered bidirectional Long Short Temporal Memory (biLSTM) based baseline, and show that noisy estimation is worse than random. To alleviate the problem, we propose a new method, dubbed Progressive Message Passing Network (PMP-Net) that better estimates the visual context in a coarse to fine manner. Specifically, we first estimate the visual context with a random initiated scene graph, then refine it with multi-head attention. The experimental results on the benchmark dataset Visual Genome show that PMP-Net achieves better or comparable performance on all three tasks: scene graph generation (SGGen), scene graph classification (SGCls), and predicate classification (PredCls).\",\"PeriodicalId\":272439,\"journal\":{\"name\":\"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icassp43922.2022.9747415\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icassp43922.2022.9747415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

场景图生成旨在通过识别对象及其关系来描述场景中的内容。在以往的工作中,视觉上下文被广泛地应用于消息传递网络中,以生成用于分类的表示。然而,视觉环境的噪声估计限制了模型的性能。在本文中,我们重新审视了通过基于随机有序的双向长短时记忆(biLSTM)基线纳入视觉上下文的概念,并表明噪声估计比随机估计更差。为了解决这个问题,我们提出了一种新的方法,称为渐进式消息传递网络(PMP-Net),它可以更好地以粗到细的方式估计视觉上下文。具体来说,我们首先使用随机启动的场景图估计视觉上下文,然后使用多头注意对其进行改进。在基准数据集Visual Genome上的实验结果表明,PMP-Net在场景图生成(SGGen)、场景图分类(SGCls)和谓词分类(PredCls)这三个任务上都取得了更好或相当的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PMP-NET: Rethinking Visual Context for Scene Graph Generation
Scene graph generation aims to describe the contents in scenes by identifying the objects and their relationships. In previous works, visual context is widely utilized in message passing networks to generate the representations for classification. However, the noisy estimation of visual context limits model performance. In this paper, we revisit the concept of incorporating visual context via a randomly ordered bidirectional Long Short Temporal Memory (biLSTM) based baseline, and show that noisy estimation is worse than random. To alleviate the problem, we propose a new method, dubbed Progressive Message Passing Network (PMP-Net) that better estimates the visual context in a coarse to fine manner. Specifically, we first estimate the visual context with a random initiated scene graph, then refine it with multi-head attention. The experimental results on the benchmark dataset Visual Genome show that PMP-Net achieves better or comparable performance on all three tasks: scene graph generation (SGGen), scene graph classification (SGCls), and predicate classification (PredCls).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信