面向产品评论分类的目标情感分析集成

Rhoda Viviane Achieng Ogutu, R. Rimiru, C. Otieno
{"title":"面向产品评论分类的目标情感分析集成","authors":"Rhoda Viviane Achieng Ogutu, R. Rimiru, C. Otieno","doi":"10.4018/jitr.299382","DOIUrl":null,"url":null,"abstract":"Abstract— Machine learning can be used to provide systems the ability to automatically learn and improve from experiences without being explicitly programmed. It is fundamentally a multidisciplinary field that draws on results from Artificial intelligence, probability and statistics, information theory and analysis, among other fields that impact the field of Machine Learning. Ensemble methods are techniques that can be used to improve the predictive ability of a Machine Learning model. An ensemble comprises of individually trained classifiers whose predictions are combined when classifying instances. Some of the currently popular ensemble methods include Boosting, Bagging and Stacking. In this paper, we review these methods and demonstrate why ensembles can often perform better than single models. Additionally, some new experiments are presented to demonstrate the computational ability of Stacking approach.","PeriodicalId":296080,"journal":{"name":"J. Inf. Technol. Res.","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Target Sentiment Analysis Ensemble for Product Review Classification\",\"authors\":\"Rhoda Viviane Achieng Ogutu, R. Rimiru, C. Otieno\",\"doi\":\"10.4018/jitr.299382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract— Machine learning can be used to provide systems the ability to automatically learn and improve from experiences without being explicitly programmed. It is fundamentally a multidisciplinary field that draws on results from Artificial intelligence, probability and statistics, information theory and analysis, among other fields that impact the field of Machine Learning. Ensemble methods are techniques that can be used to improve the predictive ability of a Machine Learning model. An ensemble comprises of individually trained classifiers whose predictions are combined when classifying instances. Some of the currently popular ensemble methods include Boosting, Bagging and Stacking. In this paper, we review these methods and demonstrate why ensembles can often perform better than single models. Additionally, some new experiments are presented to demonstrate the computational ability of Stacking approach.\",\"PeriodicalId\":296080,\"journal\":{\"name\":\"J. Inf. Technol. Res.\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Inf. Technol. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/jitr.299382\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Inf. Technol. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/jitr.299382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

摘要:机器学习可以为系统提供自动学习和改进经验的能力,而无需明确编程。从根本上说,它是一个多学科领域,它借鉴了人工智能、概率论和统计学、信息理论和分析等影响机器学习领域的其他领域的成果。集成方法是一种可以用来提高机器学习模型预测能力的技术。集成由单独训练的分类器组成,这些分类器的预测在分类实例时组合在一起。一些目前流行的组合方法包括增强,袋装和堆叠。在本文中,我们回顾了这些方法,并证明了为什么集成通常比单个模型表现更好。此外,还提出了一些新的实验来证明叠加方法的计算能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Target Sentiment Analysis Ensemble for Product Review Classification
Abstract— Machine learning can be used to provide systems the ability to automatically learn and improve from experiences without being explicitly programmed. It is fundamentally a multidisciplinary field that draws on results from Artificial intelligence, probability and statistics, information theory and analysis, among other fields that impact the field of Machine Learning. Ensemble methods are techniques that can be used to improve the predictive ability of a Machine Learning model. An ensemble comprises of individually trained classifiers whose predictions are combined when classifying instances. Some of the currently popular ensemble methods include Boosting, Bagging and Stacking. In this paper, we review these methods and demonstrate why ensembles can often perform better than single models. Additionally, some new experiments are presented to demonstrate the computational ability of Stacking approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信