一种用于机器人运动技能学习的DS-GMR耦合原语

Jian Fu, Li Ning, Sujuan Wei, Liyan Zhang
{"title":"一种用于机器人运动技能学习的DS-GMR耦合原语","authors":"Jian Fu, Li Ning, Sujuan Wei, Liyan Zhang","doi":"10.1109/ICIICII.2015.112","DOIUrl":null,"url":null,"abstract":"Imitation learning is a promising paradigm for enabling robots to autonomously perform new tasks, which is similar to the procedure of human's motion skill acquirement. In the paper, we present a novel DS-GMR coupled primitive (DGCP) for robotic motion skill learning based on imitation learning. DGCP comprises a dominated linear ordinary differential dynamic component and a GMR based forcing component. Furthermore, we carefully design the linkage mechanism of hyper parameters to achieve spatiotemporal coupling synchronically. In this way an intelligent trajectory planning in similar scenario (fulfilling target within different time and positon) could be generated spontaneously. Finally, simulation that robot perform a trajectory planning with min-jerk criteria in various duration demonstrates practical capability and efficiency of the presented method.","PeriodicalId":349920,"journal":{"name":"2015 International Conference on Industrial Informatics - Computing Technology, Intelligent Technology, Industrial Information Integration","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Novel DS-GMR Coupled Primitive for Robotic Motion Skill Learning\",\"authors\":\"Jian Fu, Li Ning, Sujuan Wei, Liyan Zhang\",\"doi\":\"10.1109/ICIICII.2015.112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Imitation learning is a promising paradigm for enabling robots to autonomously perform new tasks, which is similar to the procedure of human's motion skill acquirement. In the paper, we present a novel DS-GMR coupled primitive (DGCP) for robotic motion skill learning based on imitation learning. DGCP comprises a dominated linear ordinary differential dynamic component and a GMR based forcing component. Furthermore, we carefully design the linkage mechanism of hyper parameters to achieve spatiotemporal coupling synchronically. In this way an intelligent trajectory planning in similar scenario (fulfilling target within different time and positon) could be generated spontaneously. Finally, simulation that robot perform a trajectory planning with min-jerk criteria in various duration demonstrates practical capability and efficiency of the presented method.\",\"PeriodicalId\":349920,\"journal\":{\"name\":\"2015 International Conference on Industrial Informatics - Computing Technology, Intelligent Technology, Industrial Information Integration\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Industrial Informatics - Computing Technology, Intelligent Technology, Industrial Information Integration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIICII.2015.112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Industrial Informatics - Computing Technology, Intelligent Technology, Industrial Information Integration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIICII.2015.112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

模仿学习是使机器人能够自主完成新任务的一种很有前途的范式,它类似于人类运动技能的习得过程。本文提出了一种基于模仿学习的机器人运动技能学习DS-GMR耦合原语(DGCP)。DGCP包括主导线性常微分动力分量和基于GMR的强迫分量。此外,我们精心设计了超参数联动机制,实现了时空同步耦合。这样就可以自发地生成类似场景(在不同时间和位置完成目标)的智能轨迹规划。最后,通过机器人在不同持续时间内以最小扰动准则进行轨迹规划的仿真,验证了该方法的实用性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel DS-GMR Coupled Primitive for Robotic Motion Skill Learning
Imitation learning is a promising paradigm for enabling robots to autonomously perform new tasks, which is similar to the procedure of human's motion skill acquirement. In the paper, we present a novel DS-GMR coupled primitive (DGCP) for robotic motion skill learning based on imitation learning. DGCP comprises a dominated linear ordinary differential dynamic component and a GMR based forcing component. Furthermore, we carefully design the linkage mechanism of hyper parameters to achieve spatiotemporal coupling synchronically. In this way an intelligent trajectory planning in similar scenario (fulfilling target within different time and positon) could be generated spontaneously. Finally, simulation that robot perform a trajectory planning with min-jerk criteria in various duration demonstrates practical capability and efficiency of the presented method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信