{"title":"单向量子有限自动机:优点、缺点和推广","authors":"A. Ambainis, R. Freivalds","doi":"10.1109/SFCS.1998.743469","DOIUrl":null,"url":null,"abstract":"We study 1-way quantum finite automata (QFAs). First, we compare them with their classical counterparts. We show that, if an automaton is required to give the correct answer with a large probability (greater than 7/9), then any 1-way QFAs can be simulated by a 1-way reversible automaton. However, quantum automata giving the correct answer with smaller probabilities are more powerful than reversible automata. Second, we show that 1-way QFAs can be very space-efficient. We construct a 1-way QFA that is exponentially smaller than any equivalent classical (even randomized) finite automaton. We think that this construction may be useful for design of other space-efficient quantum algorithms. Third, we consider several generalizations of 1-way QFAs. Here, our goal is to find a model which is more powerful than 1-way QFAs keeping the quantum part as simple as possible.","PeriodicalId":228145,"journal":{"name":"Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280)","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"269","resultStr":"{\"title\":\"1-way quantum finite automata: strengths, weaknesses and generalizations\",\"authors\":\"A. Ambainis, R. Freivalds\",\"doi\":\"10.1109/SFCS.1998.743469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study 1-way quantum finite automata (QFAs). First, we compare them with their classical counterparts. We show that, if an automaton is required to give the correct answer with a large probability (greater than 7/9), then any 1-way QFAs can be simulated by a 1-way reversible automaton. However, quantum automata giving the correct answer with smaller probabilities are more powerful than reversible automata. Second, we show that 1-way QFAs can be very space-efficient. We construct a 1-way QFA that is exponentially smaller than any equivalent classical (even randomized) finite automaton. We think that this construction may be useful for design of other space-efficient quantum algorithms. Third, we consider several generalizations of 1-way QFAs. Here, our goal is to find a model which is more powerful than 1-way QFAs keeping the quantum part as simple as possible.\",\"PeriodicalId\":228145,\"journal\":{\"name\":\"Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280)\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"269\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFCS.1998.743469\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1998.743469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
1-way quantum finite automata: strengths, weaknesses and generalizations
We study 1-way quantum finite automata (QFAs). First, we compare them with their classical counterparts. We show that, if an automaton is required to give the correct answer with a large probability (greater than 7/9), then any 1-way QFAs can be simulated by a 1-way reversible automaton. However, quantum automata giving the correct answer with smaller probabilities are more powerful than reversible automata. Second, we show that 1-way QFAs can be very space-efficient. We construct a 1-way QFA that is exponentially smaller than any equivalent classical (even randomized) finite automaton. We think that this construction may be useful for design of other space-efficient quantum algorithms. Third, we consider several generalizations of 1-way QFAs. Here, our goal is to find a model which is more powerful than 1-way QFAs keeping the quantum part as simple as possible.