A. Contento, A. Aloisio, Junqing Xue, G. Quaranta, P. Gardoni, B. Briseghella
{"title":"钢管混凝土的概率承载力模型","authors":"A. Contento, A. Aloisio, Junqing Xue, G. Quaranta, P. Gardoni, B. Briseghella","doi":"10.2749/istanbul.2023.0269","DOIUrl":null,"url":null,"abstract":"Concrete-filled steel tubular (CFST) columns are increasingly used around the world due to their significant structural and economic advantages. Although considerable research and several experimental tests have been carried out on CFST columns, there are no mechanics-based probabilistic models of their axial capacity. The present research proposes a mechanicsbased probabilistic capacity model for the assessment of the ultimate axial capacity of CFST columns. The accuracy of the numerical predictions obtained with the proposed formulation is compared with that of existing capacity equations already in use within technical standards or available in the literature.","PeriodicalId":237396,"journal":{"name":"IABSE Symposium, Istanbul 2023: Long Span Bridges","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probabilistic Capacity Model for Concrete-Filled Steel Tubes\",\"authors\":\"A. Contento, A. Aloisio, Junqing Xue, G. Quaranta, P. Gardoni, B. Briseghella\",\"doi\":\"10.2749/istanbul.2023.0269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Concrete-filled steel tubular (CFST) columns are increasingly used around the world due to their significant structural and economic advantages. Although considerable research and several experimental tests have been carried out on CFST columns, there are no mechanics-based probabilistic models of their axial capacity. The present research proposes a mechanicsbased probabilistic capacity model for the assessment of the ultimate axial capacity of CFST columns. The accuracy of the numerical predictions obtained with the proposed formulation is compared with that of existing capacity equations already in use within technical standards or available in the literature.\",\"PeriodicalId\":237396,\"journal\":{\"name\":\"IABSE Symposium, Istanbul 2023: Long Span Bridges\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IABSE Symposium, Istanbul 2023: Long Span Bridges\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2749/istanbul.2023.0269\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IABSE Symposium, Istanbul 2023: Long Span Bridges","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2749/istanbul.2023.0269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Probabilistic Capacity Model for Concrete-Filled Steel Tubes
Concrete-filled steel tubular (CFST) columns are increasingly used around the world due to their significant structural and economic advantages. Although considerable research and several experimental tests have been carried out on CFST columns, there are no mechanics-based probabilistic models of their axial capacity. The present research proposes a mechanicsbased probabilistic capacity model for the assessment of the ultimate axial capacity of CFST columns. The accuracy of the numerical predictions obtained with the proposed formulation is compared with that of existing capacity equations already in use within technical standards or available in the literature.