热定义介质中重夸克的相关性

Xinyu Li, Xiaohan Song
{"title":"热定义介质中重夸克的相关性","authors":"Xinyu Li, Xiaohan Song","doi":"10.11648/J.AJPA.20190703.14","DOIUrl":null,"url":null,"abstract":"The early universe consists of bacis particles like quarks and gluons. Their interactions are controlled by strong interactions. In order to produce this new kind of matters, one can collide heavy ions. Large amount of energy will be transformed into particles. These particles form a matter with extremely high temperature. Usually this kind of matter can only be produced in heavy ion collisions, not nucleon collisions. But the recent experimental data indicate that it may also generate this kind of matter. The signal in nucleon collisions are taken as a baseline for heavy ion collisions, and other theoretical and experimental studies are based on this assumption that no hot medium is produced in nucleon collisions. If this new matter is also produced in nucleon collisions, this will affect the signals in heavy ion collisions. This work studies the momentum correlations of heavy quark pairs in the small colliding system such as proton-proton collisions based on the Langevin equation. With the production of deconfined hot medium, heavy quarks moving in the opposite direction can suffer energy loss and random kicks from the thermal medium. Moving in different directions, heavy quark and its anti-quark will suffer different random kicks from the thermal medium, which will change their momentum randomly. Their momentum correlations will be modified after moving out of the hot medium. Finally when heavy quark and anti-quark move out of the hot medium, their momentum is not in the opposite direction. Insteand, they move with a angular less than pi. We propose the momentum correlation of D mesons as a probe of the early stage of the proton-proton collisions, where the deconfined medium may be produced.","PeriodicalId":329149,"journal":{"name":"American Journal of Physics and Applications","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Correlations of Heavy Quarks in Hot Deconfined Medium\",\"authors\":\"Xinyu Li, Xiaohan Song\",\"doi\":\"10.11648/J.AJPA.20190703.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The early universe consists of bacis particles like quarks and gluons. Their interactions are controlled by strong interactions. In order to produce this new kind of matters, one can collide heavy ions. Large amount of energy will be transformed into particles. These particles form a matter with extremely high temperature. Usually this kind of matter can only be produced in heavy ion collisions, not nucleon collisions. But the recent experimental data indicate that it may also generate this kind of matter. The signal in nucleon collisions are taken as a baseline for heavy ion collisions, and other theoretical and experimental studies are based on this assumption that no hot medium is produced in nucleon collisions. If this new matter is also produced in nucleon collisions, this will affect the signals in heavy ion collisions. This work studies the momentum correlations of heavy quark pairs in the small colliding system such as proton-proton collisions based on the Langevin equation. With the production of deconfined hot medium, heavy quarks moving in the opposite direction can suffer energy loss and random kicks from the thermal medium. Moving in different directions, heavy quark and its anti-quark will suffer different random kicks from the thermal medium, which will change their momentum randomly. Their momentum correlations will be modified after moving out of the hot medium. Finally when heavy quark and anti-quark move out of the hot medium, their momentum is not in the opposite direction. Insteand, they move with a angular less than pi. We propose the momentum correlation of D mesons as a probe of the early stage of the proton-proton collisions, where the deconfined medium may be produced.\",\"PeriodicalId\":329149,\"journal\":{\"name\":\"American Journal of Physics and Applications\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Physics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.AJPA.20190703.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Physics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.AJPA.20190703.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

早期的宇宙由夸克和胶子等基本粒子组成。它们的相互作用受强相互作用的控制。为了产生这种新物质,人们可以使重离子发生碰撞。大量的能量将转化为粒子。这些粒子形成一种具有极高温度的物质。通常这种物质只能在重离子碰撞中产生,而不能在核子碰撞中产生。但最近的实验数据表明,它也可能产生这种物质。将核子碰撞中的信号作为重离子碰撞的基线,其他理论和实验研究都是基于核子碰撞中不产生热介质的假设。如果这种新物质也在核子碰撞中产生,这将影响重离子碰撞中的信号。本文基于朗之万方程研究了质子-质子碰撞等小型碰撞系统中重夸克对的动量相关性。随着定义热介质的产生,向相反方向运动的重夸克会遭受热介质的能量损失和随机踢动。在不同的方向上运动,重夸克和它的反夸克会受到热介质不同的随机踢,这将随机改变它们的动量。它们的动量相关性在离开热介质后将被修正。最后,当重夸克和反夸克离开热介质时,它们的动量并不在相反的方向上。相反,它们以小于的角度运动。我们提出了D介子的动量关联作为质子-质子碰撞早期阶段的探测,在那里可能产生定义介质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Correlations of Heavy Quarks in Hot Deconfined Medium
The early universe consists of bacis particles like quarks and gluons. Their interactions are controlled by strong interactions. In order to produce this new kind of matters, one can collide heavy ions. Large amount of energy will be transformed into particles. These particles form a matter with extremely high temperature. Usually this kind of matter can only be produced in heavy ion collisions, not nucleon collisions. But the recent experimental data indicate that it may also generate this kind of matter. The signal in nucleon collisions are taken as a baseline for heavy ion collisions, and other theoretical and experimental studies are based on this assumption that no hot medium is produced in nucleon collisions. If this new matter is also produced in nucleon collisions, this will affect the signals in heavy ion collisions. This work studies the momentum correlations of heavy quark pairs in the small colliding system such as proton-proton collisions based on the Langevin equation. With the production of deconfined hot medium, heavy quarks moving in the opposite direction can suffer energy loss and random kicks from the thermal medium. Moving in different directions, heavy quark and its anti-quark will suffer different random kicks from the thermal medium, which will change their momentum randomly. Their momentum correlations will be modified after moving out of the hot medium. Finally when heavy quark and anti-quark move out of the hot medium, their momentum is not in the opposite direction. Insteand, they move with a angular less than pi. We propose the momentum correlation of D mesons as a probe of the early stage of the proton-proton collisions, where the deconfined medium may be produced.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信