{"title":"本体支持的分类规则挖掘用于鉴别发现","authors":"B. Luong, S. Ruggieri, F. Turini","doi":"10.1109/ICDMW.2016.0128","DOIUrl":null,"url":null,"abstract":"Discrimination discovery from data consists of designing data mining methods for the actual discovery of discriminatory situations and practices hidden in a large amount of historical decision records. Approaches based on classification rule mining consider items at a flat concept level, with no exploitation of background knowledge on the hierarchical and inter-relational structure of domains. On the other hand, ontologies are a widespread and ever increasing means for expressing such a knowledge. In this paper, we propose a framework for discrimination discovery from ontologies, where contexts of prima-facie evidence of discrimination are summarized in the form of generalized classification rules at different levels of abstraction. Throughout the paper, we adopt a motivating and intriguing case study based on discriminatory tariffs applied by the U. S. Harmonized Tariff Schedules on imported goods.","PeriodicalId":373866,"journal":{"name":"2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Classification Rule Mining Supported by Ontology for Discrimination Discovery\",\"authors\":\"B. Luong, S. Ruggieri, F. Turini\",\"doi\":\"10.1109/ICDMW.2016.0128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Discrimination discovery from data consists of designing data mining methods for the actual discovery of discriminatory situations and practices hidden in a large amount of historical decision records. Approaches based on classification rule mining consider items at a flat concept level, with no exploitation of background knowledge on the hierarchical and inter-relational structure of domains. On the other hand, ontologies are a widespread and ever increasing means for expressing such a knowledge. In this paper, we propose a framework for discrimination discovery from ontologies, where contexts of prima-facie evidence of discrimination are summarized in the form of generalized classification rules at different levels of abstraction. Throughout the paper, we adopt a motivating and intriguing case study based on discriminatory tariffs applied by the U. S. Harmonized Tariff Schedules on imported goods.\",\"PeriodicalId\":373866,\"journal\":{\"name\":\"2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW)\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW.2016.0128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2016.0128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Classification Rule Mining Supported by Ontology for Discrimination Discovery
Discrimination discovery from data consists of designing data mining methods for the actual discovery of discriminatory situations and practices hidden in a large amount of historical decision records. Approaches based on classification rule mining consider items at a flat concept level, with no exploitation of background knowledge on the hierarchical and inter-relational structure of domains. On the other hand, ontologies are a widespread and ever increasing means for expressing such a knowledge. In this paper, we propose a framework for discrimination discovery from ontologies, where contexts of prima-facie evidence of discrimination are summarized in the form of generalized classification rules at different levels of abstraction. Throughout the paper, we adopt a motivating and intriguing case study based on discriminatory tariffs applied by the U. S. Harmonized Tariff Schedules on imported goods.