广义电磁框架下噪声和信道失真的联合估计

T. Krisjansson, B. Frey, L. Deng, A. Acero
{"title":"广义电磁框架下噪声和信道失真的联合估计","authors":"T. Krisjansson, B. Frey, L. Deng, A. Acero","doi":"10.1109/ASRU.2001.1034611","DOIUrl":null,"url":null,"abstract":"The performance of speech cleaning and noise adaptation algorithms is heavily dependent on the quality of the noise and channel models. Various strategies have been proposed in the literature for adapting to the current noise and channel conditions. We describe the joint learning of noise and channel distortion in a novel framework called ALGONQUIN. The learning algorithm employs a generalized EM strategy wherein the E step is approximate. We discuss the characteristics of the new algorithm, with a focus on convergence rates and parameter initialization. We show that the learning algorithm can successfully disentangle the non-linear effects of noise and linear effects of the channel and achieve a relative reduction in WER of 21.8% over the non-adaptive algorithm.","PeriodicalId":118671,"journal":{"name":"IEEE Workshop on Automatic Speech Recognition and Understanding, 2001. ASRU '01.","volume":"452 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Joint estimation of noise and channel distortion in a generalized EM framework\",\"authors\":\"T. Krisjansson, B. Frey, L. Deng, A. Acero\",\"doi\":\"10.1109/ASRU.2001.1034611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance of speech cleaning and noise adaptation algorithms is heavily dependent on the quality of the noise and channel models. Various strategies have been proposed in the literature for adapting to the current noise and channel conditions. We describe the joint learning of noise and channel distortion in a novel framework called ALGONQUIN. The learning algorithm employs a generalized EM strategy wherein the E step is approximate. We discuss the characteristics of the new algorithm, with a focus on convergence rates and parameter initialization. We show that the learning algorithm can successfully disentangle the non-linear effects of noise and linear effects of the channel and achieve a relative reduction in WER of 21.8% over the non-adaptive algorithm.\",\"PeriodicalId\":118671,\"journal\":{\"name\":\"IEEE Workshop on Automatic Speech Recognition and Understanding, 2001. ASRU '01.\",\"volume\":\"452 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Workshop on Automatic Speech Recognition and Understanding, 2001. ASRU '01.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU.2001.1034611\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Workshop on Automatic Speech Recognition and Understanding, 2001. ASRU '01.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2001.1034611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

语音清理和噪声自适应算法的性能很大程度上取决于噪声和信道模型的质量。为了适应当前的噪声和信道条件,文献中提出了各种策略。我们在一个叫做ALGONQUIN的新框架中描述了噪声和信道失真的联合学习。学习算法采用广义的EM策略,其中E步是近似的。我们讨论了新算法的特点,重点是收敛速度和参数初始化。我们表明,学习算法可以成功地分离噪声的非线性影响和信道的线性影响,并且与非自适应算法相比,相对降低了21.8%的WER。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Joint estimation of noise and channel distortion in a generalized EM framework
The performance of speech cleaning and noise adaptation algorithms is heavily dependent on the quality of the noise and channel models. Various strategies have been proposed in the literature for adapting to the current noise and channel conditions. We describe the joint learning of noise and channel distortion in a novel framework called ALGONQUIN. The learning algorithm employs a generalized EM strategy wherein the E step is approximate. We discuss the characteristics of the new algorithm, with a focus on convergence rates and parameter initialization. We show that the learning algorithm can successfully disentangle the non-linear effects of noise and linear effects of the channel and achieve a relative reduction in WER of 21.8% over the non-adaptive algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信