多序列比对与人工神经网络恶意软件检测

Yi Chen, A. Narayanan, Shaoning Pang, B. Tao
{"title":"多序列比对与人工神经网络恶意软件检测","authors":"Yi Chen, A. Narayanan, Shaoning Pang, B. Tao","doi":"10.1109/ICNC.2012.6234576","DOIUrl":null,"url":null,"abstract":"Malware is currently a major threat to information and computer security, with the volume and growing diversity of its variants causing major problems to traditional security defenses. Software patches and upgrades to anti-viral packages are typically released only after the malware's key characteristics have been identified through infection, by which time it may be too late to protect systems. Sequence analysis is widely used in bioinformatics for revealing the genetic diversity of organisms and annotating gene functions. This paper adopts a new approach to the problem of malware recognition, which is to use multiple sequence alignment techniques from bioinformatics to align variable length computer viral and worm code so that core, invariant regions of the code occupy fixed positions in the alignment patterns. Data mining (ANNs, symbolic rule extraction) can then be used to learn the critical features that help to determine into which class the aligned patterns fall. Experimental results demonstrate the feasibility of our novel approach for identifying malware code through multiple sequence alignment followed by analysis by ANNs and symbolic rule extraction methods.","PeriodicalId":404981,"journal":{"name":"2012 8th International Conference on Natural Computation","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Multiple sequence alignment and artificial neural networks for malicious software detection\",\"authors\":\"Yi Chen, A. Narayanan, Shaoning Pang, B. Tao\",\"doi\":\"10.1109/ICNC.2012.6234576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Malware is currently a major threat to information and computer security, with the volume and growing diversity of its variants causing major problems to traditional security defenses. Software patches and upgrades to anti-viral packages are typically released only after the malware's key characteristics have been identified through infection, by which time it may be too late to protect systems. Sequence analysis is widely used in bioinformatics for revealing the genetic diversity of organisms and annotating gene functions. This paper adopts a new approach to the problem of malware recognition, which is to use multiple sequence alignment techniques from bioinformatics to align variable length computer viral and worm code so that core, invariant regions of the code occupy fixed positions in the alignment patterns. Data mining (ANNs, symbolic rule extraction) can then be used to learn the critical features that help to determine into which class the aligned patterns fall. Experimental results demonstrate the feasibility of our novel approach for identifying malware code through multiple sequence alignment followed by analysis by ANNs and symbolic rule extraction methods.\",\"PeriodicalId\":404981,\"journal\":{\"name\":\"2012 8th International Conference on Natural Computation\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 8th International Conference on Natural Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2012.6234576\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 8th International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2012.6234576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

恶意软件是当前信息和计算机安全的主要威胁,其变体的数量和多样性给传统的安全防御带来了重大问题。通常只有在通过感染识别出恶意软件的关键特征后,才会发布软件补丁和反病毒软件包的升级,到那时,保护系统可能为时已晚。序列分析在生物信息学中被广泛应用于揭示生物的遗传多样性和基因功能注释。本文采用了一种新的方法来解决恶意软件识别问题,即利用生物信息学中的多种序列比对技术对变长计算机病毒和蠕虫代码进行比对,使代码的核心不变区域在比对模式中占据固定位置。然后可以使用数据挖掘(ann,符号规则提取)来学习关键特征,这些特征有助于确定对齐的模式属于哪一类。实验结果证明了该方法的可行性,该方法通过多序列比对、人工神经网络分析和符号规则提取方法来识别恶意代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiple sequence alignment and artificial neural networks for malicious software detection
Malware is currently a major threat to information and computer security, with the volume and growing diversity of its variants causing major problems to traditional security defenses. Software patches and upgrades to anti-viral packages are typically released only after the malware's key characteristics have been identified through infection, by which time it may be too late to protect systems. Sequence analysis is widely used in bioinformatics for revealing the genetic diversity of organisms and annotating gene functions. This paper adopts a new approach to the problem of malware recognition, which is to use multiple sequence alignment techniques from bioinformatics to align variable length computer viral and worm code so that core, invariant regions of the code occupy fixed positions in the alignment patterns. Data mining (ANNs, symbolic rule extraction) can then be used to learn the critical features that help to determine into which class the aligned patterns fall. Experimental results demonstrate the feasibility of our novel approach for identifying malware code through multiple sequence alignment followed by analysis by ANNs and symbolic rule extraction methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信