多核SIMD cpu和支持cuda的gpu的性能和能效

Ronald Duarte, Resit Sendag, F. J. Vetter
{"title":"多核SIMD cpu和支持cuda的gpu的性能和能效","authors":"Ronald Duarte, Resit Sendag, F. J. Vetter","doi":"10.1109/IISWC.2013.6704683","DOIUrl":null,"url":null,"abstract":"This paper explores the performance and energy efficiency of CUDA-enabled GPUs and multi-core SIMD CPUs using a set of kernels and full applications. Our implementations efficiently exploit both SIMD and thread-level parallelism on multi-core CPUs and the computational capabilities of CUDA-enabled GPUs. We discuss general optimization techniques for our CPU-only and CPU-GPU platforms. To fairly study performance and energy-efficiency, we also used two applications which utilize several kernels. Finally, we present an evaluation of the implementation effort required to efficiently utilize multi-core SIMD CPUs and CUDA-enabled GPUs for the benchmarks studied. Our results show that kernel-only performance and energy-efficiency could be misleading when evaluating parallel hardware; therefore, true results must be obtained using full applications. We show that, after all respective optimizations have been made, the best performing and energy-efficient platform varies for different benchmarks. Finally, our results show that PPEH (Performance gain Per Effort Hours), our newly introduced metric, can affectively be used to quantify efficiency of implementation effort across different benchmarks and platforms.","PeriodicalId":365868,"journal":{"name":"2013 IEEE International Symposium on Workload Characterization (IISWC)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"On the performance and energy-efficiency of multi-core SIMD CPUs and CUDA-enabled GPUs\",\"authors\":\"Ronald Duarte, Resit Sendag, F. J. Vetter\",\"doi\":\"10.1109/IISWC.2013.6704683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper explores the performance and energy efficiency of CUDA-enabled GPUs and multi-core SIMD CPUs using a set of kernels and full applications. Our implementations efficiently exploit both SIMD and thread-level parallelism on multi-core CPUs and the computational capabilities of CUDA-enabled GPUs. We discuss general optimization techniques for our CPU-only and CPU-GPU platforms. To fairly study performance and energy-efficiency, we also used two applications which utilize several kernels. Finally, we present an evaluation of the implementation effort required to efficiently utilize multi-core SIMD CPUs and CUDA-enabled GPUs for the benchmarks studied. Our results show that kernel-only performance and energy-efficiency could be misleading when evaluating parallel hardware; therefore, true results must be obtained using full applications. We show that, after all respective optimizations have been made, the best performing and energy-efficient platform varies for different benchmarks. Finally, our results show that PPEH (Performance gain Per Effort Hours), our newly introduced metric, can affectively be used to quantify efficiency of implementation effort across different benchmarks and platforms.\",\"PeriodicalId\":365868,\"journal\":{\"name\":\"2013 IEEE International Symposium on Workload Characterization (IISWC)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Symposium on Workload Characterization (IISWC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IISWC.2013.6704683\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Symposium on Workload Characterization (IISWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IISWC.2013.6704683","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文使用一组内核和完整的应用程序探讨了支持cuda的gpu和多核SIMD cpu的性能和能源效率。我们的实现有效地利用多核cpu上的SIMD和线程级并行性以及支持cuda的gpu的计算能力。我们讨论了CPU-only和CPU-GPU平台的一般优化技术。为了公平地研究性能和能源效率,我们还使用了两个使用多个内核的应用程序。最后,我们对有效利用多核SIMD cpu和支持cuda的gpu进行基准测试所需的实现工作进行了评估。我们的结果表明,在评估并行硬件时,仅内核的性能和能源效率可能会产生误导;因此,必须使用完整的应用程序获得真实的结果。我们表明,在进行了所有相应的优化之后,对于不同的基准测试,最佳性能和节能平台是不同的。最后,我们的结果表明,我们新引入的指标PPEH (Per Effort Hours Performance gain)可以有效地用于量化不同基准测试和平台上实现工作的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the performance and energy-efficiency of multi-core SIMD CPUs and CUDA-enabled GPUs
This paper explores the performance and energy efficiency of CUDA-enabled GPUs and multi-core SIMD CPUs using a set of kernels and full applications. Our implementations efficiently exploit both SIMD and thread-level parallelism on multi-core CPUs and the computational capabilities of CUDA-enabled GPUs. We discuss general optimization techniques for our CPU-only and CPU-GPU platforms. To fairly study performance and energy-efficiency, we also used two applications which utilize several kernels. Finally, we present an evaluation of the implementation effort required to efficiently utilize multi-core SIMD CPUs and CUDA-enabled GPUs for the benchmarks studied. Our results show that kernel-only performance and energy-efficiency could be misleading when evaluating parallel hardware; therefore, true results must be obtained using full applications. We show that, after all respective optimizations have been made, the best performing and energy-efficient platform varies for different benchmarks. Finally, our results show that PPEH (Performance gain Per Effort Hours), our newly introduced metric, can affectively be used to quantify efficiency of implementation effort across different benchmarks and platforms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信