{"title":"基于连续动态规划的面部表情识别","authors":"H. Zhang, Y. Guo","doi":"10.1109/RATFG.2001.938926","DOIUrl":null,"url":null,"abstract":"Describes an approach to facial expression recognition (FER). We represent facial expressions by a facial motion graph (FMG), which is based on feature points and muscle movements. FER is achieved by analyzing the similarity between an unknown expression's FMG and FMG models of known expressions by employing continuous dynamic programming. Furthermore we propose a method to evaluate edge weights in FMG similarity calculation, and use these edge weights to achieve a more accurate and robust system. Experiments show the excellent performance of this system on our video database, which contains video data captured under various conditions with multiple motion patterns.","PeriodicalId":355094,"journal":{"name":"Proceedings IEEE ICCV Workshop on Recognition, Analysis, and Tracking of Faces and Gestures in Real-Time Systems","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Facial expression recognition using continuous dynamic programming\",\"authors\":\"H. Zhang, Y. Guo\",\"doi\":\"10.1109/RATFG.2001.938926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Describes an approach to facial expression recognition (FER). We represent facial expressions by a facial motion graph (FMG), which is based on feature points and muscle movements. FER is achieved by analyzing the similarity between an unknown expression's FMG and FMG models of known expressions by employing continuous dynamic programming. Furthermore we propose a method to evaluate edge weights in FMG similarity calculation, and use these edge weights to achieve a more accurate and robust system. Experiments show the excellent performance of this system on our video database, which contains video data captured under various conditions with multiple motion patterns.\",\"PeriodicalId\":355094,\"journal\":{\"name\":\"Proceedings IEEE ICCV Workshop on Recognition, Analysis, and Tracking of Faces and Gestures in Real-Time Systems\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings IEEE ICCV Workshop on Recognition, Analysis, and Tracking of Faces and Gestures in Real-Time Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RATFG.2001.938926\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE ICCV Workshop on Recognition, Analysis, and Tracking of Faces and Gestures in Real-Time Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RATFG.2001.938926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Facial expression recognition using continuous dynamic programming
Describes an approach to facial expression recognition (FER). We represent facial expressions by a facial motion graph (FMG), which is based on feature points and muscle movements. FER is achieved by analyzing the similarity between an unknown expression's FMG and FMG models of known expressions by employing continuous dynamic programming. Furthermore we propose a method to evaluate edge weights in FMG similarity calculation, and use these edge weights to achieve a more accurate and robust system. Experiments show the excellent performance of this system on our video database, which contains video data captured under various conditions with multiple motion patterns.