模数矩阵乘法的因式分解

Edward H. Lee, Madeleine Udell, S. Wong
{"title":"模数矩阵乘法的因式分解","authors":"Edward H. Lee, Madeleine Udell, S. Wong","doi":"10.1109/ICASSP.2015.7178132","DOIUrl":null,"url":null,"abstract":"We present matrix factorization as an enabling technique for analog-to-digital matrix multiplication (AD-MM). We show that factorization in the analog domain increases the total precision of AD-MM in precision-limited analog multiplication, reduces the number of analog-to-digital (A/D) conversions needed for overcomplete matrices, and avoids unneeded computations in the digital domain. Finally, we present a factorization algorithm using alternating convex relaxation.","PeriodicalId":117666,"journal":{"name":"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Factorization for analog-to-digital matrix multiplication\",\"authors\":\"Edward H. Lee, Madeleine Udell, S. Wong\",\"doi\":\"10.1109/ICASSP.2015.7178132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present matrix factorization as an enabling technique for analog-to-digital matrix multiplication (AD-MM). We show that factorization in the analog domain increases the total precision of AD-MM in precision-limited analog multiplication, reduces the number of analog-to-digital (A/D) conversions needed for overcomplete matrices, and avoids unneeded computations in the digital domain. Finally, we present a factorization algorithm using alternating convex relaxation.\",\"PeriodicalId\":117666,\"journal\":{\"name\":\"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2015.7178132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2015.7178132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们提出矩阵分解作为一种使能技术模拟到数字矩阵乘法(AD-MM)。研究表明,模拟域中的因式分解提高了AD-MM在精度有限的模拟乘法中的总精度,减少了过完备矩阵所需的模数(A/D)转换次数,并避免了数字域中不必要的计算。最后,我们提出了一种使用交替凸松弛的分解算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Factorization for analog-to-digital matrix multiplication
We present matrix factorization as an enabling technique for analog-to-digital matrix multiplication (AD-MM). We show that factorization in the analog domain increases the total precision of AD-MM in precision-limited analog multiplication, reduces the number of analog-to-digital (A/D) conversions needed for overcomplete matrices, and avoids unneeded computations in the digital domain. Finally, we present a factorization algorithm using alternating convex relaxation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信