{"title":"模数矩阵乘法的因式分解","authors":"Edward H. Lee, Madeleine Udell, S. Wong","doi":"10.1109/ICASSP.2015.7178132","DOIUrl":null,"url":null,"abstract":"We present matrix factorization as an enabling technique for analog-to-digital matrix multiplication (AD-MM). We show that factorization in the analog domain increases the total precision of AD-MM in precision-limited analog multiplication, reduces the number of analog-to-digital (A/D) conversions needed for overcomplete matrices, and avoids unneeded computations in the digital domain. Finally, we present a factorization algorithm using alternating convex relaxation.","PeriodicalId":117666,"journal":{"name":"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Factorization for analog-to-digital matrix multiplication\",\"authors\":\"Edward H. Lee, Madeleine Udell, S. Wong\",\"doi\":\"10.1109/ICASSP.2015.7178132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present matrix factorization as an enabling technique for analog-to-digital matrix multiplication (AD-MM). We show that factorization in the analog domain increases the total precision of AD-MM in precision-limited analog multiplication, reduces the number of analog-to-digital (A/D) conversions needed for overcomplete matrices, and avoids unneeded computations in the digital domain. Finally, we present a factorization algorithm using alternating convex relaxation.\",\"PeriodicalId\":117666,\"journal\":{\"name\":\"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2015.7178132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2015.7178132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Factorization for analog-to-digital matrix multiplication
We present matrix factorization as an enabling technique for analog-to-digital matrix multiplication (AD-MM). We show that factorization in the analog domain increases the total precision of AD-MM in precision-limited analog multiplication, reduces the number of analog-to-digital (A/D) conversions needed for overcomplete matrices, and avoids unneeded computations in the digital domain. Finally, we present a factorization algorithm using alternating convex relaxation.