用于肝炎自动诊断的高分辨率系统

Hadeel N. Abdullah, Bassam H. Abd, Sara H. Muhi
{"title":"用于肝炎自动诊断的高分辨率系统","authors":"Hadeel N. Abdullah, Bassam H. Abd, Sara H. Muhi","doi":"10.1109/SCEE.2018.8684154","DOIUrl":null,"url":null,"abstract":"This study aims to optimize the accuracy of diseases diagnosis, where many studies have been conducted to challenge the highest diagnostic accuracy of hepatitis disease because the early and correct diagnosis increases the chance of saving the patient's life from this deadly disease. Therefore, in this paper, we have done a good test for three classifications, namely: support vector machine (SVM), multilayer perceptron (MLP) and K-nearest neighbor (KNN). The accuracy of the KNN overcome the rest of the classifier with 100% accuracy for the diagnosis of hepatitis disease. We used the same division of data used in previous works for a fair comparison using the datasets gotten from the UCI machine learning database, with 19 features. This result is the best yet.","PeriodicalId":357053,"journal":{"name":"2018 Third Scientific Conference of Electrical Engineering (SCEE)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"High-Resolution Systems for Automated Diagnosis of Hepatitis\",\"authors\":\"Hadeel N. Abdullah, Bassam H. Abd, Sara H. Muhi\",\"doi\":\"10.1109/SCEE.2018.8684154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aims to optimize the accuracy of diseases diagnosis, where many studies have been conducted to challenge the highest diagnostic accuracy of hepatitis disease because the early and correct diagnosis increases the chance of saving the patient's life from this deadly disease. Therefore, in this paper, we have done a good test for three classifications, namely: support vector machine (SVM), multilayer perceptron (MLP) and K-nearest neighbor (KNN). The accuracy of the KNN overcome the rest of the classifier with 100% accuracy for the diagnosis of hepatitis disease. We used the same division of data used in previous works for a fair comparison using the datasets gotten from the UCI machine learning database, with 19 features. This result is the best yet.\",\"PeriodicalId\":357053,\"journal\":{\"name\":\"2018 Third Scientific Conference of Electrical Engineering (SCEE)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Third Scientific Conference of Electrical Engineering (SCEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCEE.2018.8684154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Third Scientific Conference of Electrical Engineering (SCEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCEE.2018.8684154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本研究旨在优化疾病诊断的准确性,在这方面已经进行了许多研究,以挑战肝炎疾病的最高诊断准确性,因为早期和正确的诊断增加了从这种致命疾病中拯救患者生命的机会。因此,在本文中,我们对支持向量机(SVM)、多层感知机(MLP)和k近邻(KNN)这三种分类方法做了很好的测试。在肝炎疾病的诊断中,KNN的准确率超过了其他分类器,达到100%。我们使用了与之前工作中相同的数据划分,使用来自UCI机器学习数据库的数据集进行公平比较,具有19个特征。这个结果是最好的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-Resolution Systems for Automated Diagnosis of Hepatitis
This study aims to optimize the accuracy of diseases diagnosis, where many studies have been conducted to challenge the highest diagnostic accuracy of hepatitis disease because the early and correct diagnosis increases the chance of saving the patient's life from this deadly disease. Therefore, in this paper, we have done a good test for three classifications, namely: support vector machine (SVM), multilayer perceptron (MLP) and K-nearest neighbor (KNN). The accuracy of the KNN overcome the rest of the classifier with 100% accuracy for the diagnosis of hepatitis disease. We used the same division of data used in previous works for a fair comparison using the datasets gotten from the UCI machine learning database, with 19 features. This result is the best yet.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信