J. Toofanpour, M. Javanian, M. Javanian, R. Imany-Nabiyyi
{"title":"随机递归树保护节点轮廓的法向极限律","authors":"J. Toofanpour, M. Javanian, M. Javanian, R. Imany-Nabiyyi","doi":"10.4213/tvp5455","DOIUrl":null,"url":null,"abstract":"Защищенные вершины, т.е. вершины с расстоянием не менее $2$ до ближайшего листа, были изучены для различных классов случайных корневых деревьев. В предложенной статье исследуется профиль защищенных вершин, т.е. количество защищенных вершин, находящихся на фиксированном расстоянии от корня в случайном рекурсивном дереве. В случае, когда отношение указанного расстояния к логарифму размера дерева стремится к нулю, мы находим асимптотические представления для математического ожидания, дисперсии и ковариации между профилями защищенных и незащищенных вершин в случайных рекурсивных деревьях. Мы также показываем, используя двумерную характеристическую функцию и сингулярный анализ, что совместное распределение профилей защищенных и незащищенных вершин является в пределе двумерным нормальным распределением.","PeriodicalId":132929,"journal":{"name":"Teoriya Veroyatnostei i ee Primeneniya","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Normal limit law for protected node profile of random recursive trees\",\"authors\":\"J. Toofanpour, M. Javanian, M. Javanian, R. Imany-Nabiyyi\",\"doi\":\"10.4213/tvp5455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Защищенные вершины, т.е. вершины с расстоянием не менее $2$ до ближайшего листа, были изучены для различных классов случайных корневых деревьев. В предложенной статье исследуется профиль защищенных вершин, т.е. количество защищенных вершин, находящихся на фиксированном расстоянии от корня в случайном рекурсивном дереве. В случае, когда отношение указанного расстояния к логарифму размера дерева стремится к нулю, мы находим асимптотические представления для математического ожидания, дисперсии и ковариации между профилями защищенных и незащищенных вершин в случайных рекурсивных деревьях. Мы также показываем, используя двумерную характеристическую функцию и сингулярный анализ, что совместное распределение профилей защищенных и незащищенных вершин является в пределе двумерным нормальным распределением.\",\"PeriodicalId\":132929,\"journal\":{\"name\":\"Teoriya Veroyatnostei i ee Primeneniya\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Teoriya Veroyatnostei i ee Primeneniya\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4213/tvp5455\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Teoriya Veroyatnostei i ee Primeneniya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4213/tvp5455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Normal limit law for protected node profile of random recursive trees
Защищенные вершины, т.е. вершины с расстоянием не менее $2$ до ближайшего листа, были изучены для различных классов случайных корневых деревьев. В предложенной статье исследуется профиль защищенных вершин, т.е. количество защищенных вершин, находящихся на фиксированном расстоянии от корня в случайном рекурсивном дереве. В случае, когда отношение указанного расстояния к логарифму размера дерева стремится к нулю, мы находим асимптотические представления для математического ожидания, дисперсии и ковариации между профилями защищенных и незащищенных вершин в случайных рекурсивных деревьях. Мы также показываем, используя двумерную характеристическую функцию и сингулярный анализ, что совместное распределение профилей защищенных и незащищенных вершин является в пределе двумерным нормальным распределением.