排列随机漫步通常在线性时间内退出

S. Ganguly, Y. Peres
{"title":"排列随机漫步通常在线性时间内退出","authors":"S. Ganguly, Y. Peres","doi":"10.1137/1.9781611973204.7","DOIUrl":null,"url":null,"abstract":"Given a permutation σ of the integers {−n, −n + 1,...,n} we consider the Markov chain Xσ, which jumps from k to σ(k ± 1) equally likely if k ≠ −n,n. We prove that the expected hitting time of {−n,n} starting from any point is Θ(n) with high probability when σ is a uniformly chosen permutation. We prove this by showing that with high probability, the digraph of allowed transitions is an Eulerian expander; we then utilize general estimates of hitting times in directed Eulerian expanders.","PeriodicalId":340112,"journal":{"name":"Workshop on Analytic Algorithmics and Combinatorics","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Permuted Random Walk Exits Typically in Linear Time\",\"authors\":\"S. Ganguly, Y. Peres\",\"doi\":\"10.1137/1.9781611973204.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a permutation σ of the integers {−n, −n + 1,...,n} we consider the Markov chain Xσ, which jumps from k to σ(k ± 1) equally likely if k ≠ −n,n. We prove that the expected hitting time of {−n,n} starting from any point is Θ(n) with high probability when σ is a uniformly chosen permutation. We prove this by showing that with high probability, the digraph of allowed transitions is an Eulerian expander; we then utilize general estimates of hitting times in directed Eulerian expanders.\",\"PeriodicalId\":340112,\"journal\":{\"name\":\"Workshop on Analytic Algorithmics and Combinatorics\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Analytic Algorithmics and Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/1.9781611973204.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Analytic Algorithmics and Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611973204.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

给定整数{−n,−n + 1,…,n}我们考虑马尔可夫链Xσ,当k≠- n,n时,它从k跃迁到σ(k±1)等可能。证明了当σ为一致选择的排列时,{−n,n}从任意点出发的期望命中时间为Θ(n),且概率高。我们证明了在高概率下,允许跃迁的有向图是一个欧拉展开式;然后我们利用有向欧拉展开中命中时间的一般估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Permuted Random Walk Exits Typically in Linear Time
Given a permutation σ of the integers {−n, −n + 1,...,n} we consider the Markov chain Xσ, which jumps from k to σ(k ± 1) equally likely if k ≠ −n,n. We prove that the expected hitting time of {−n,n} starting from any point is Θ(n) with high probability when σ is a uniformly chosen permutation. We prove this by showing that with high probability, the digraph of allowed transitions is an Eulerian expander; we then utilize general estimates of hitting times in directed Eulerian expanders.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信