一种可靠、节能的改进vbf的水声传感器网络跨层协议

Ning Sun, Guangjie Han, Tongtong Wu, Jinfang Jiang, Lei Shu
{"title":"一种可靠、节能的改进vbf的水声传感器网络跨层协议","authors":"Ning Sun, Guangjie Han, Tongtong Wu, Jinfang Jiang, Lei Shu","doi":"10.4108/EAI.19-8-2015.2260909","DOIUrl":null,"url":null,"abstract":"Underwater sensor networks (USNs) has many characteristics different from terrestrial wireless sensor networks (WSNs), such as dynamic network topology, unreliable acoustic communication, which increases the difficulty in energy efficiency and reliability of data transmission, for traditional WSN protocols are not suitable for underwater acoustic sensor networks (UASNs). Vector based forwarding (VBF) protocol is an energy efficient routing protocol for UASNs, by using the location information of nodes to limit the scale of flooding so that to save energy consumption and handle the mobility of nodes. In this paper a cross-layer protocol is proposed, which not only utilizes the VBF-based routing algorithm, but also considers the residual energy and the times of data relay in a cycle time to make more optimized decision whether a node will forward data or not. According to the simulation results, more evenly energy consumption and reliable data transmission are achieved, compared to previous VBF-based routing protocols for UASNs.","PeriodicalId":152628,"journal":{"name":"2015 11th International Conference on Heterogeneous Networking for Quality, Reliability, Security and Robustness (QSHINE)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"A reliable and energy efficient VBF-improved cross-layer protocol for underwater acoustic sensor network\",\"authors\":\"Ning Sun, Guangjie Han, Tongtong Wu, Jinfang Jiang, Lei Shu\",\"doi\":\"10.4108/EAI.19-8-2015.2260909\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Underwater sensor networks (USNs) has many characteristics different from terrestrial wireless sensor networks (WSNs), such as dynamic network topology, unreliable acoustic communication, which increases the difficulty in energy efficiency and reliability of data transmission, for traditional WSN protocols are not suitable for underwater acoustic sensor networks (UASNs). Vector based forwarding (VBF) protocol is an energy efficient routing protocol for UASNs, by using the location information of nodes to limit the scale of flooding so that to save energy consumption and handle the mobility of nodes. In this paper a cross-layer protocol is proposed, which not only utilizes the VBF-based routing algorithm, but also considers the residual energy and the times of data relay in a cycle time to make more optimized decision whether a node will forward data or not. According to the simulation results, more evenly energy consumption and reliable data transmission are achieved, compared to previous VBF-based routing protocols for UASNs.\",\"PeriodicalId\":152628,\"journal\":{\"name\":\"2015 11th International Conference on Heterogeneous Networking for Quality, Reliability, Security and Robustness (QSHINE)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 11th International Conference on Heterogeneous Networking for Quality, Reliability, Security and Robustness (QSHINE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4108/EAI.19-8-2015.2260909\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 11th International Conference on Heterogeneous Networking for Quality, Reliability, Security and Robustness (QSHINE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/EAI.19-8-2015.2260909","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

水下传感器网络具有与地面无线传感器网络(WSNs)不同的特点,如网络拓扑结构动态性强、声学通信不可靠等,传统的WSN协议不适合用于水下传感器网络(uasn),增加了数据传输的能效和可靠性。矢量转发(Vector based forwarding, VBF)协议是一种高效节能的uasn路由协议,它利用节点的位置信息来限制泛洪的规模,从而达到节约能耗和处理节点移动性的目的。本文提出了一种跨层协议,该协议不仅利用了基于vbf的路由算法,而且考虑了一个循环时间内的剩余能量和数据中继次数,从而对节点是否转发数据做出更优化的决策。仿真结果表明,与以往基于vbf的uasn路由协议相比,该协议实现了更均匀的能耗和可靠的数据传输。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A reliable and energy efficient VBF-improved cross-layer protocol for underwater acoustic sensor network
Underwater sensor networks (USNs) has many characteristics different from terrestrial wireless sensor networks (WSNs), such as dynamic network topology, unreliable acoustic communication, which increases the difficulty in energy efficiency and reliability of data transmission, for traditional WSN protocols are not suitable for underwater acoustic sensor networks (UASNs). Vector based forwarding (VBF) protocol is an energy efficient routing protocol for UASNs, by using the location information of nodes to limit the scale of flooding so that to save energy consumption and handle the mobility of nodes. In this paper a cross-layer protocol is proposed, which not only utilizes the VBF-based routing algorithm, but also considers the residual energy and the times of data relay in a cycle time to make more optimized decision whether a node will forward data or not. According to the simulation results, more evenly energy consumption and reliable data transmission are achieved, compared to previous VBF-based routing protocols for UASNs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信